SAMPLING AND ANALYSIS OF AMBIENT AIR QUALITY AND WATER QUALITY IN SELECTED INDUSTRIAL/CLUSTER AREAS AT VATVA

Submitted to

GPCB-Gandhinagar
Paryavaran Bhavan
Sector-10-A, Gandhinagar-382021
Website: www.gpcb.gov.in

Sponsored by

The Green Environment Services Co-op. Society Itd.
Vatva

SAMPLING AND ANALYSIS OF AMBIENT AIR QUALITY AND WATER QUALITY IN SELECTED INDUSTRIAL/CLUSTER AREAS AT VATVA

For
The Green Environment Services Co-op. Society Ltd. Vatva

For and on behalf of M / s. Bhagavathi Ana Labs Pvt. Ltd.
Approved by: Dr. Santosh Zargar
Signed
Position : Lab Manager
Date

This report has been prepared by M / s. Bhagavathi Ana Labs Private Limited with all reasonable skill, care and diligence within the terms of the contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. Name of the sampling locations /sample identity details -provided by client.

SAMPLING AND ANALYSIS OF AMBIENT AIR QUALITY AND WATER QUALITY IN SELECTED INDUSTRIAL/CLUSTER AREAS AT VATVA- AHMEDABAD

Tables of Content:
S. No. Title Page No.

1. Project Study 02
2. Details of Sampling Locations 02
3. Analytical Methodology 02
4. Data Analysis 02

Annexures:

Annexure-1: Test Reports

SAMPLING AND ANALYSIS OF AMBIENT AIR QUALITY AND WATER QUALITY IN SELECTED INDUSTRIAL/CLUSTER AREAS AT VATVA- AHMEDABAD

1.0 Project Study:

With a view to assess the environmental quality arising from the activities undertaken by M / s. The Green Enviroment Services Co-op. Society Ltd., Vatva retained M / s. Bhagavathi Ana Labs Private Limited for carrying out Environmental monitoring studies on Seasonal basis.

In this study report, results of Ambient Air Quality, Surface Water Quality \& Ground Water Quality analysis data are presented for the month of June 2016.

2.0 DETAILS OF SAMPLING LOCATIONS

2.1 Ambient Air Quality:

To assess the Environment monitoring around Vatva for baseline data on the Ambient Air, parameters like $\mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{PM}_{10}, \mathrm{PM}_{2.5}, \mathrm{O}_{3}$, Lead, CO, Ammonia, Benzene, Benzo(a) pyrene, Arsenic, Nickel on seasonal basis were monitored at four locations around the Vatva in the month of June-2016. Samples were collected as per CPCB guidelines based on wind direction. The details of the sampling locations are given below in Table-1.

2.2 Surface and Ground Water Quality:

Surface and Ground Water Quality samples are collected from different locations to know the characteristics of Surface and Ground Water Quality. Samples were collected as per CPCB guidelines. The details of the sampling locations are given below in Table-2.

3.0 Analytical Methodology:

IS, APHA $22^{\text {nd }}$ Edition, CPCB, EPA methods were followed for sampling and analysis of ambient air quality; surface \& ground water quality.

4.0 Data Analysis:

Test reports of Fieldwork during month of June 2016 consisted of collection and analysis of samples of ambient air quality, surface \& ground water quality at different locations around the Vatva are presented in Annexure-I.

ANNEXURE-1

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

Table-1 AAQ MONITORING LOCATIONS

SAMPLE CODE	NAME OF THE MONITORING LOCATION	DATE OF SAMPLING	LATITUDE	LONGITUDE
AAQ -1	Vatva Industrial Association	04.06 .2016 to 09.06 .2016	$\mathrm{~N} 21^{\circ} 58^{\prime} 11.0^{\prime \prime}$	$\mathrm{E} 072^{\circ} 38^{\prime} 35.5^{\prime \prime}$
AAQ -2	M/s. Patel Chem	04.06 .2016 to 09.06 .2016	$\mathrm{~N} 21^{\circ} 58^{\prime} 11.0^{\prime \prime}$	$\mathrm{E} 072^{\circ} 38^{\prime} 35.5^{\prime \prime}$
AAQ -3	M/s. Mamta Narol	05.06 .2016 to 10.06 .2016	$\mathrm{~N} 21^{\circ} 58^{\prime} 11.0^{\prime \prime}$	$\mathrm{E} 072^{\circ} 36^{\prime} 08.3^{\prime \prime}$
AAQ -4	M/s. Hemline	05.06 .2016 to 10.06 .2016	$\mathrm{E} 072^{\circ} 38^{\prime} 35.5^{\prime \prime}$	$\mathrm{E} 072^{\circ} 38^{\prime} 35.5^{\prime \prime}$

Table-2 SURFACE WATER SAMPLING LOCATIONS

SAMPLE CODE	NAME OF THE SAMPLING LOCATION	DATE OF SAMPLING	LATITUDE	LONGITUDE
SW - 1	CETP Vatva Outlet	$04.06 .2016 ~ t o ~$ 08.06 .2016	$\mathrm{~N} 22^{\circ} 57^{\prime} 15.9^{\prime \prime}$	$\mathrm{E} 072^{\circ} 38^{\prime} 21.1^{\prime \prime}$
SW - 2	Mega line Outline	04.06 .2016 to 08.06 .2016	$\mathrm{~N} 22^{\circ} 58^{\prime} 46.4^{\prime \prime}$	$\mathrm{E} 072^{\circ} 32^{\prime} 39.3^{\prime \prime}$
SW - 3	Kharikat Vanal at Vinzol Bridge	04.06 .2016 to 08.06 .2016	$\mathrm{~N} 22^{\circ} 57^{\prime} 07.1^{\prime \prime}$	$\mathrm{E} 072^{\circ} 38^{\prime} 24.2^{\prime \prime}$
SW -4	Miroli Pumping Station	04.06 .2016 to 08.06 .2016	$\mathrm{~N} 22^{\circ} 52^{\prime} 34.1^{\prime \prime}$	$\mathrm{E} 072^{\circ} 30^{\prime} 09.8^{\prime \prime}$
SW -5	Vinzol Lake	04.06 .2016 to 08.06 .2016	$\mathrm{~N} 22^{\circ} 57^{\prime} 07.4^{\prime \prime}$	$\mathrm{E} 072^{\circ} 38^{\prime} 32.9^{\prime \prime}$

Table-2 GROUND WATER SAMPLING LOCATIONS

$\begin{aligned} & \text { SAMPLE } \\ & \text { CODE } \end{aligned}$	NAME OF THE SAMPLING LOCATION	DATE OF SAMPLING	LATITUDE	LONGITUDE
GW-1	VIA Vatva	$\begin{gathered} 04.06 .2016 \text { to } \\ 08.06 .2016 \end{gathered}$	N $21^{\circ} 58{ }^{\prime} 11.0^{\prime \prime}$	E $072^{\circ} 38^{\prime} 35.5^{\prime \prime}$
GW - 2	CETP Green Vatva	$\begin{gathered} \hline 04.06 .2016 \text { to } \\ 08.06 .2016 \end{gathered}$	N $22^{\circ} 57^{\prime} 03.4 \prime \prime$	E $072^{\circ} 38^{\prime} 16.8^{\prime \prime}$
GW-3	Hemline textiles-Narol	$\begin{gathered} 04.06 .2016 \text { to } \\ 08.06 .2016 \\ \hline \end{gathered}$	N $22^{\circ} 57 \prime 51.4 \prime$	E $072^{\circ} 36^{\prime} 08.3^{\prime \prime}$
GW-4	Swan Energy-Narol	$\begin{gathered} 04.06 .2016 \text { to } \\ 08.06 .2016 \\ \hline \end{gathered}$	N $22^{\circ} 57^{\prime} 49.0^{\prime \prime}$	E $072^{\circ} 34^{\prime} 13.1^{\prime \prime}$

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

AMBIENT AIR QUALITY MONITORING

Location: VIA

S.No.	Pollutant(s)	Units	RESULTS			Test Methods
			04.06.2016	06.06.2016	8.06.2016	
1	SO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	12.8	10.4	11.8	IS 5182 (Part 2) - 2001, West \& Gaeke Method) \& CPCB Manual
2	NO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	18	17.2	18.6	IS 5182 (Part 6) - 2001, Jacob \& Hochheiser - Sodium Arsenite Method) \& CPCB Manual
3	PM_{10}	$\mu \mathrm{g} / \mathrm{m} 3$	82	86	98	IS 5182 (Part - 23), 1999, RA 2009, Cyclone Flow Technique \& CPCB Manual
4	$\mathrm{PM}_{2.5}$	$\mu \mathrm{g} / \mathrm{m} 3$	33	39	36	Internal SOP \& CPCB Manual
5	O_{3}	. $\mu \mathrm{g} / \mathrm{m} 3$	12.6	14.7	13.2	IS 5182 (Part 9), 1974, RA 2009, UV Spectrophotometric Method/ISC Method No. 411 , 3 rd Edition 1989 \& CPCB Manual
6	Lead	$\mu \mathrm{g} / \mathrm{m} 3$	0.31	0.39	0.33	USEPA Method - 10-3.5, (ICP - MS Method) \& CPCB Manual
7	CO	mg/m3	<2	<2	<2	$\begin{aligned} & \text { IS } 5182 \text { (Part - 10), 1999, RA 2009, GC } \\ & \text { Method \& CPCB Manual } \end{aligned}$
8	Ammonia	$\mu \mathrm{g} / \mathrm{m} 3$	11.4	13.8	14.7	Method 401 - Air Sampling and Analysis, APHA, $3^{\text {rd }}$ Edition \& CPCB Manual
9	Benzene	$\mu \mathrm{g} / \mathrm{m} 3$	<3	<3	<3	USEPA Method - TO-3, Absorption and Desorption followed by GC-MS \& CPCB Manual
10	Benzo(a) pyrene	ng/m3	<0.5	<0.5	<0.5	USEPA Method - T0-13A \& CPCB Manual
11	Arsenic	$\mathrm{ng} / \mathrm{m} 3$	<0.9	<0.9	<0.9	USEPA Method - 10-3.5, (ICP - MS Method) \& CPCB Manual
12	Nickel	$\mathrm{ng} / \mathrm{m} 3$	2.4	2.7	2.6	USEPA Method - IO-3.5, (ICP - MS Method) \& CPCB Manual

AHMEDABAD - GUJARAT

AMBIENT AIR QUALITY MONITORING

Location: Patel Chem

S.No.	Pollutant(s)	Units	RESULTS			Test Methods
			04.06.2016	06.06.2016	8.06.2016	
1	SO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	9.4	8.4	7.6	IS 5182 (Part 2) - 2001, West \& Gaeke Method) \& CPCB Manual
2	NO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	13.7	14.6	13.4	IS 5182 (Part 6) - 2001, Jacob \& Hochheiser Sodium Arsenite Method) \& CPCB Manual
3	PM_{10}	$\mu \mathrm{g} / \mathrm{m} 3$	72	79	72	IS 5182 (Part - 23), 1999, RA 2009, Cyclone Flow Technique \& CPCB Manual
4	$\mathrm{PM}_{2.5}$	$\mu \mathrm{g} / \mathrm{m} 3$	27	23	25	Internal SOP \& CPCB Manual
5	O_{3}	$\mu \mathrm{g} / \mathrm{m} 3$	9.7	17.8	23.4	IS 5182 (Part 9), 1974, RA 2009, UV Spectrophotometric Method/ISC Method No.411, 3rd Edition 1989 \& CPCB Manual
6	Lead	$\mu \mathrm{g} / \mathrm{m} 3$	0.27	0.34	0.37	USEPA Method - I0-3.5, (ICP - MS Method) \& CPCB Manual
7	CO	mg/m3	<2	<2	<2	IS 5182 (Part - 10), 1999, RA 2009, GC Method \& CPCB Manual
8	Ammonia	$\mu \mathrm{g} / \mathrm{m} 3$	17.6	9.7	11.4	Method 401 - Air Sampling and Analysis, APHA, $3^{\text {rd }}$ Edition \& CPCB Manual
9	Benzene	$\mu \mathrm{g} / \mathrm{m} 3$	<3	<3	<3	USEPA Method - TO-3, Absorption and Desorption followed by GC-MS \& CPCB Manual
10	Benzo(a) pyrene	ng/m3	<0.5	<0.5	<0.5	USEPA Method - TO13A \& CPCB Manual
11	Arsenic	ng/m3	<0.9	<0.9	<0.9	USEPA Method - IO-3.5, (ICP - MS Method) \& CPCB Manual
12	Nickel	ng/m3	9.1	7.6	8.4	USEPA Method - 10-3.5, (ICP - MS Method) \& CPCB Manual

AHMEDABAD - GUJARAT

AMBIENT AIR QUALITY MONITORING

Location: Mamta Narol

S.No.	Pollutant(s)	Units	RESULTS			Test Methods
			05.06.2016	07.06.2016	9.06.2016	
1	SO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	10.2	11.4	12.4	IS 5182 (Part 2) - 2001, West \& Gaeke Method) \& CPCB Manual
2	NO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	14.3	17.5	19.7	IS 5182 (Part 6) - 2001, Jacob \& Hochheiser - Sodium Arsenite Method) \& CPCB Manual
3	PM_{10}	$\mu \mathrm{g} / \mathrm{m} 3$	85	88	96	IS 5182 (Part - 23), 1999, RA 2009, Cyclone Flow Technique \& CPCB Manual
4	$\mathrm{PM}_{2.5}$	$\mu \mathrm{g} / \mathrm{m} 3$	39	32	39	Internal SOP \& CPCB Manual
5	O_{3}	$\mu \mathrm{g} / \mathrm{m} 3$	12.4	18.7	17.4	IS 5182 (Part 9), 1974, RA 2009, UV Spectrophotometric Method/ISC Method No.411, 3rd Edition 1989 \& CPCB Manual
6	Lead	$\mu \mathrm{g} / \mathrm{m} 3$	0.22	0.24	0.27	USEPA Method - IO-3.5, (ICP - MS Method) \& CPCB Manual
7	CO	$\mathrm{mg} / \mathrm{m} 3$	<2	<2	<2	IS 5182 (Part - 10), 1999, RA 2009, GC Method \& CPCB Manual
8	Ammonia	$\mu \mathrm{g} / \mathrm{m} 3$	7.5	17.3	16.4	Method 401 - Air Sampling and Analysis, APHA, $3^{\text {rd }}$ Edition \& CPCB Manual
9	Benzene	$\mu \mathrm{g} / \mathrm{m} 3$	<3	<3	<3	USEPA Method - TO-3, Absorption and Desorption followed by GC-MS \& CPCB Manual
10	Benzo(a) pyrene	ng/m3	<0.5	<0.5	<0.5	USEPA Method - TO13A \& CPCB Manual
11	Arsenic	ng/m3	<0.9	<0.9	<0.9	USEPA Method - I0-3.5, (ICP - MS Method) \& CPCB Manual
12	Nickel	ng/m3	5.7	8.7	8.4	USEPA Method - 10-3.5, (ICP - MS Method) \& CPCB Manual

AHMEDABAD - GUJARAT

AMBIENT AIR OUALITY MONITORING

Location: Hemline

S.No.	' Pollutant(s)	Units	RESULTS			Test Methods
			05.06.2016	07.06.2016	9.06.2016	
1	SO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	8.7	9.7	10.7	IS 5182 (Part 2) - 2001, West \& Gaeke Method) \& CPCB Manual
2	NO_{2}	$\mu \mathrm{g} / \mathrm{m} 3$	15.1	16.4	16.7	IS 5182 (Part 6) - 2001, Jacob \& Hochheiser Sodium Arsenite Method) \& CPCB Manual
3	PM_{10}	$\mu \mathrm{g} / \mathrm{m} 3$	76	83	81	IS 5182 (Part - 23), 1999, RA 2009, Cyclone Flow Technique \& CPCB Manual
4	$\mathrm{PM}_{2.5}$	$\mu \mathrm{g} / \mathrm{m} 3$	49	40	38	Internal SOP \& CPCB Manual
5	O_{3}	$\mu \mathrm{g} / \mathrm{m} 3$	13.8	19.4	18.4	IS 5182 (Part 9), 1974, RA 2009, UV Spectrophotometric Method/ISC Method No.411, 3rd Edition 1989 \& CPCB Manual
6	Lead	$\mu \mathrm{g} / \mathrm{m} 3$	0.29	0.31	0.34	USEPA Method - IO-3.5, (ICP - MS Method) \& CPCB Manual
7	CO	mg/m3	<2	<2	<2	IS 5182 (Part - 10), 1999, RA 2009, GC Method \& CPCB Manual
8	Ammonia	$\mu \mathrm{g} / \mathrm{m} 3$	- 11.4	12.4	13.8	Method 401 - Air Sampling and Analysis, APHA, 3 rd Edition \& CPCB Manual
9	Benzene	$\mu \mathrm{g} / \mathrm{m} 3$	<3	<3	<3	USEPA Method - T0-3, Absorption and Desorption followed by GC-MS \& CPCB Manual
10	Benzo(a) pyrene	ng/m3	<0.5	<0.5	<0.5	USEPA Method - TO-13A \& CPCB Manual
11	Arsenic	ng/m3	<0.9	<0.9	<0.9	USEPA Method - I0-3.5, (ICP - MS Method) \& CPCB Manual
12	Nickel	ng/m3	9.4	11.4	12.9	USEPA Method - IO-3.5, (ICP - MS Method) \& CPCB Manual

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

SURFACE WATER QUALITY
Location-CETP Vatva Outlet

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	Hazen	Brown	Brown	Brown	IS 3025: Part - 4
2	Odour (Smell)	-	Non Agreeable	Non Agreeable	Non Agreeable	IS 3025: Part - 5
3	pH	-	6.91	7.51	7.46	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg / l	5	7	8	IS 3025: Part - 39
5	Suspended Solids (SS)	mg / l	46	44 /	36	IS 3025: Part - 17
6	Dissolved Oxygen (DO)	mg / l	2.2	2.5	2.4	IS 3025: Part - 38
7	Chemical Oxygen Demand (COD)	mg/l	320	338	328	IS 3025: Part - 58
8	Bio-chemical Oxygen Demand (BOD)	mg / l	35	35	32	IS 3025: Part - 44
9	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	1800	1820	1840	IS 3025: Part - 14
10	Nitrite-nitrogen as N	mg / l	0.07	0.09	0.05	APHA 4500- NO_{2}. B
11	Nitrate-Nitrogen as N	mg / l	6.88	5.28	8.14	APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$
12	Total Nitrogen (N02 + NO3)	mg / l	6.95	5.37	8.19	By Calculation
13	Free Ammonia	mg/l	<0.02	<0.02	<0.02	APHA $4500-\mathrm{NH}_{3} . \mathrm{C}$
14	Total Residual Chlorine	mg / l	<0.1	<0.1	<0.1	IS 3025: Part - 26
15	Cyanide as CN-	mg / l	BDL	BDL	BDL	IS 3025: Part - 27
16	Fluoride as F-	- mg/l	0.8	0.8	0.9	IS 3025: Part - 60
17	Sulphides as S**	mg/l	<0.1	<0.1	<0.1	IS 3025: Part - 29
18	Dissolved Phosphates as P	mg / l	<0.01	<0.01	<0.01	APHA 4500 - P.D
19	Sodium Absorption Ratio (SAR)	-	20.4	19.5	22.69	By Calculation
20	Total Coliform	MPN/ 100 ml	21	22	19	IS 1622
21.	Faecal Coliform	MPN/100ml	9	11	13	IS 1622
22	Total Phosphorous	mg/l	<0.1	<0.1	<0.1	APHA 4500 - P.D
23	Total Kjeldal Nitrogen (TKN)	mg / l	32	36	33	APHA 4500 - Norg.B
24	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	mg / l	18	20	17	APHA $4500-\mathrm{NH}_{3}$
25	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part - 43
26	Surface Active Agent	mg / l	<0.1	<0.1	<0.1	IS 13428
27	Organo-chlorine Pesticides(OCP)	mg / l	N.D	N.D	N.D	EPA 508
28	PAH's	mg / l	N.D	N.D	N.D	EPA 525.2
29	PCB	mg / l	N.D	N.D	N.D	EPA 508
30	PCT	mg/l	N.D	N.D	N.D	EPA 508
31	Zinc as Zn	mg/l	0.41	0.38	0.4	IS 3025: Part - 49
32	Nickel as Ni	mg / l	0.05	0.03	0.02	IS 3025: Part - 54
33	Copper as Cu	mg/l	0.02	0.05	0.03	IS 3025: Part - 42
34	Hexavalent Chromium as Cr^{+}	mg / l	BDL	BDL	BDL	APHA 3500-Cr. D
35	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part - 52
36	Arsenic as As	mg/l	BDL	BDL	BDL	IS 3025: Part - 37
37	Lead as Pb	mg / l	BDL	BDL	BDL	IS 3025: Part - 47
38	Cadmium as $\mathrm{Cd}^{\text {- }}$	mg / l	BDL	BDL	BDL	IS 3025: Part - 41
39	Manganese as Mn	mg / l	0.42	0.53	0.49	APHA 3111-B
40	Mercury as Hg	mg / l	BDL	BDL	BDL	IS 3025: Part - 48
41	Iron as Fe	mg / l	2.12	2.36	2.52	IS 3025: Part - 53
42	Vanadium as V	mg / l	BDL	BDL	BDL	APHA 3111 - D
43	Selenium as Se	mg/l	BDL	BDL	BDL	IS 3025: Part-56
44	Boron as B	- mg/l	0.62	0.64	0.67	IS 3025: Part - 57

AHMEDABAD - GUJARAT

SURFACE WATER QUALITY Location- Mega line Outline

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6 .16	8.6.16	
1	Colour	Hazen	Brown	Brown	Brown	IS 3025: Part-4
2	Odour (Smell)	-	Non Agreeable	Non Agreeable	Non Agreeable	IS 3025: Part-5
3	pH	-	7.01	7.52	7.49	IS 3025: Part-11
4	Oil \& Grease (0\&G)	mg/l	7	6	8	IS 3025: Part - 39
5	Suspended Solids (SS)	mg / l	120 -	118	112	IS 3025: Part - 17
6	Dissolved Oxygen (DO)	mg/l	4.5	4.8	5.1	IS 3025: Part - 38
7	Chemical Oxygen Demand (COD)	mg/l	350	372	346	IS 3025: Part - 58
8	Bio-chemical Oxygen Demand (BOD)	mg / l	48 -	56 /	56 -	IS 3025: Part - 44
9	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	11200	11300	11400	IS 3025: Part - 14
10	Nitrite-nitrogen as N	mg / l	0.11	0.18	0.14	APHA $4500-\mathrm{NO}_{2}$. B
11	Nitrate-Nitrogen as N	mg/l	2.06	6.28	5.14	APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$
12	Total Nitrogen ($\mathrm{NO2}+\mathrm{NO} 3)$. mg/l	2.17	6.46	5.28	By Calculation
13	Free Ammonia	mg/l	<0.02	<0.02	<0.02	APHA $4500-\mathrm{NH}_{3} . \mathrm{C}$
14	Total Residual Chlorine	mg/l	0.6	0.4	0.4	IS 3025: Part - 26
15	Cyanide as CN-	mg/l	BDL	BDL	BDL	IS 3025: Part - 27
16	Fluoride as F-	mg / l	0.2	0.2	0.2	IS 3025: Part-60
17	Sulphides as S**	mg/l	10	6	8	IS 3025: Part - 29
18	Dissolved Phosphates as P	mg / l	<0.01	<0.01	<0.01	APHA 4500 - P.D
19	Sodium Absorption Ratio (SAR)	-	13.8	16.4	15.3	By Calculation
20	Total Coliform	MPN/100ml	28	30	27	IS 1622
21	Faecal Coliform	MPN/100ml	28	27	30	IS 1622
22	Total Phosphorous	mg/l	<0.1	<0.1	<0.1	APHA 4500 - P.D
23	Total Kjeldal Nitrogen (TKN)	mg / l	45	48 -	$43 \sim$	APHA 4500 - Norg.B
24	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	mg / l	32	25	24	APHA 4500- NH_{3}
25	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part - 43
26	Surface Active Agent	mg / l	<0.1	<0.1	<0.1	IS 13428
27	Organo-chlorine Pesticides(OCP)	mg/l	N.D	N.D	N.D	EPA 508
28	PAH's	mg/l	N.D	N.D	N.D	EPA 525.2
29	PCB	mg / l	N.D	N.D	N.D	EPA 508
30	PCT	mg/l	N.D	N.D	N.D	EPA 508
31	Zinc as Zn	mg/l	0.82	0.92	0.78	IS 3025: Part - 49
32	Nickel as Ni	mg / l	0.11	0.12	0.1	IS 3025: Part - 54
33	Copper as Cu	mg / l	0.04	0.05	0.07	IS 3025: Part - 42
34	Hexavalent Chromium as $\mathrm{Cr} 6^{+}$	mg / l	BDL	BDL	BDL	APHA 3500-Cr. D
35	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part - 52
36	Arsenic as As	mg / l	BDL	BDL	BDL	IS 3025: Part - 37
37	Lead as Pb	mg/l	BDL	BDL	BDL	IS 3025: Part - 47
38	Cadmium as Cd	mg/l	BDL	BDL	BDL	IS 3025: Part - 41
39	Manganese as Mn	mg/l	1.09	1.14	1.1	APHA 3111 - B
40	Mercury as Hg	mg/l	BDL	BDL	BDL	IS 3025: Part - 48
41	Iron as Fe	mg / l	4.15	4.21	4.36	IS 3025: Part - 53
42	Vanadium as V	mg/l	BDL	BDL	BDL	APHA 3111 - D
43	Selenium as Se	mg/l	BDL	BDL	BDL	IS 3025: Part-56
44	Boron as B	mg/l	0.47	0.39	0.43	IS 3025: Part - 57

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

SURFACE WATER QUALITY

 Location- Kharikat Vanal at Vinzol Bridge| Sr.
 No. | Test Parameters | UOM | Results | | | Test Method |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 4.6.16 | 6.6.16 | 8.6.16 | |
| 1 | Colour | Hazen | Pale Yellow | Pale Yellow | Pale Yellow | IS 3025: Part-4 |
| 2 | Odour (Smell) | - | Non
 Agreeable | Non Agreeable | Non Agreeable | IS 3025: Part - 5 |
| 3 | pH | - | 7.72 | 7.03 | 7.28 | IS 3025: Part - 11 |
| 4 | Oil \& Grease (0\&G) | mg/l | N.D | N.D | N.D | IS 3025: Part-39 |
| 5 | Suspended Solids (SS) | mg / l | 12 - | 18 | 16 | IS 3025: Part - 17 |
| 6 | Dissolved Oxygen (DO) | mg/l | 6.2 | 6.4 | 6.8 | IS 3025: Part - 38 |
| 7 | Chemical Oxygen Derhand (COD) | mg / l | 14 | 16 | 18 | IS 3025: Part - 58 |
| 8 | Bio-chemical Oxygen Demand (BOD) | mg / l | 4 - | $6-$ | 6 | IS 3025: Part - 44 |
| 9 | Conductivity (EC) | $\cdot \mu \mathrm{S} / \mathrm{cm}$ | 680 | 670 | 680 | IS 3025: Part - 14 |
| 10 | Nitrite-nitrogen as N | mg/l | 0.96 | 0.91 | 0.94 | APHA 4500- $\mathrm{NO}_{2} . \mathrm{B}$ |
| 11 | Nitrate-Nitrogen as N | mg / l | 5.05 | 8.25 | 6.21 | APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$ |
| 12 | Total Nitrogen (N02 + NO3) | mg / l | 6.01 | 9.16 | 7.15 | By Calculation |
| 13 | Free Ammonia | mg / l | <0.02 | <0.02 | <0.02 | APHA 4500- $\mathrm{NH}_{3} \mathrm{C}$ |
| 14 | Total Residual Chlorine | mg / l | <0.1 | <0.1 | <0.1 | IS 3025: Part - 26 |
| 15 | Cyanide as CN - | mg / l | BDL | BDL | BDL | IS 3025: Part - 27 |
| 16 | Fluoride as F- | mg / l | 0.97 | 0.95 | 0.92 | IS 3025: Part - 60 |
| 17 | Sulphides as S ${ }^{\text {- }}$ | mg / l | <0.1 | <0.1 | <0.1 | IS 3025: Part - 29 |
| 18 | Dissolved Phosphates as P | mg / l | <0.01 | <0.01 | <0.01 | APHA 4500 - P.D |
| 19 | Sodium Absorption Ratio (SAR) | - | 1.95 | 2.6 | 2.1 | By Calculation |
| 20 | Total Coliform | MPN/100ml | 320 | 315 | 318 | IS 1622 |
| 21 | Faecal Coliform | MPN/ 100 ml | 23 | 27 | 25 | IS 1622 |
| 22 | Total Phosphorous | mg / l | <0.1 | <0.1 | <0.1 | APHA 4500 - P.D |
| 23 | Total Kjeldal Nitrogen (TKN) | mg / l | 2 - | 2 - | 2 - | APHA 4500 - Norg. ${ }^{\text {a }}$ |
| 24 | Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen | mg / l | 1.4 | 1.8 | 2 | APHA $4500-\mathrm{NH}_{3}$ |
| 25 | Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ | mg/l | <0.001 | <0.001 | <0.001 | IS 3025: Part - 43 |
| 26 | Surface Active Agent | mg / l | 0.15 | 0.16 | 0.14 | IS 13428 |
| 27 | Organo-chloriṇe Pesticides(OCP) | mg / l | N.D | N.D | N.D | EPA 508 |
| 28 | PAH's | mg / l | N.D | N.D | N.D | EPA 525.2 |
| 29 | PCB | mg / l | N.D | N.D | N.D | EPA 508 |
| 30 | PCT | mg / l | N.D | N.D | N.D | EPA 508 |
| 31 | Zinc as Zn | mg / l | <0.01 | <0.01 | <0.01 | IS 3025: Part - 49 |
| 32 | Nickel as Ni | mg / l | <0.01 | <0.01 | <0.01 | IS 3025: Part - 54 |
| 33 | Copper as Cu | mg/l | <0.01 | <0.01 | <0.01 | IS 3025: Part - 42 |
| 34 | Hexavalent Chromium as Cr6 ${ }^{+}$ | mg / l | BDL | BDL | BDL | APHA 3500-Cr. D |
| 35 | Total Chromium as Cr | mg / l | BDL | BDL | BDL | IS 3025: Part-52 |
| 36 | Arsenic as As | mg/l | BDL | BDL | BDL | IS 3025: Part - 37 |
| 37 | Lead as Pb | mg / l | BDL | BDL | BDL | IS 3025: Part - 47 |
| 38 | Cadmium as Cd | mg/l | BDL | BDL | BDL | IS 3025: Part - 41 |
| 39 | Manganese as Mn | mg / l | 0.08 | 0.05 | 0.06 | APHA 3111-B |
| 40 | Mercury as Hg | mg / l | BDL | BDL | BDL | IS 3025: Part - 48 |
| 41 | Iron as Fe | mg / l | 1.15 | 1.08 | 1.11 | IS 3025: Part - 53 |
| 42 | Vanadium as V | mg / l | BDL | BDL | BDL | APHA 3111 - D |
| 43 | Selenium as Se | mg / l | BDL | BDL | BDL | IS 3025: Part - 56 |
| 44 | Boron as B | mg / l | 0.09 | 0.11 | 0.13 | IS 3025: Part - 57 |

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

SURFACE WATER QUALITY Location- Miroli Pumping Station

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	- Hazen	Light Brown	Light Brown	Light Brown	IS 3025: Part - 4
2	Odour (Smell)	. ${ }^{-}$	Non Agreeable	Non Agreeable	Non Agreeable	IS 3025: Part - 5
3.	pH	-	7.02	7.43	7.36	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg/l	N.D	N.D	N.D	IS 3025: Part - 39
25	Suspended Solids (SS)	mg/l	168 -	155 -	164 r	IS 3025: Part - 17
6	Dissolved Oxygen (DO)	mg/l	4.5	4.5	4.5	IS 3025: Part - 38
7	Chemical Oxygen Demand (COD)	mg/l	198	184	190	IS 3025: Part - 58
18	Bio-chemical Oxygen Demand (BOD)	mg / l	25	26	27%	IS 3025: Part - 44
9	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	1500	1540	1520	IS 3025: Part - 14
10	Nitrite-nitrogen as N	mg / l	<0.01	<0.01	<0.01	APHA 4500- $\mathrm{NO}_{2} . \mathrm{B}$
11	Nitrate-Nitrogen as N	mg/l	2.03	3.14	2.18	APHA 4500- $\mathrm{NO}_{3 .}$ B
12	Total Nitrogen ($\mathrm{N} 02+\mathrm{NO} 3$)	mg / l	2.03	3.14	2.18	By Calculation
13	Free Ammonia	mg / l	<0.02	<0.02	<0.02	APHA 4500- $\mathrm{NH}_{3} . \mathrm{C}$
14	Total Residual Chlorine	mg/l	0.3	0.3	0.2	IS 3025: Part - 26
15	Cyanide as CN .	mg / l	BDL	BDL	BDL	IS 3025: Part - 27
16	Fluoride as F-	mg/l	0.97	0.93	0.94	IS 3025: Part - 60
17	Sulphides as S-	mg / l	5	3	4	IS 3025: Part - 29
18	Dissolved Phosphates as P	mg/l	<0.01	<0.01	<0.01	APHA 4500 - P.D
19	Sodium Absorption Ratio (SAR)	-	9.7	10.4	8.7	By Calculation
20	Total Coliform .	MPN/100ml	11	13	15	IS 1622
21	Faecal Coliform	MPN/100ml	5	6	6	IS 1622
22	Total Phosphorous	mg / l	<0.1	<0.1	<0.1	APHA 4500 - P.D
3 23	Total Kjeldal Nitrogen (TKN)	mg/l	8 -	8 -	8 -	APHA 4500 - Norg.B
24	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	. mg/l	6	6	6	APHA 4500- NH_{3}
25	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part - 43
26	Surface Active Agent	mg / l	0.17	0.19	0.18	IS 13428
27	Organo-chlorine Pesticides(0CP)	mg / l	N.D	N.D	N.D	EPA 508
28	PAH's	mg/l	N.D	N.D	N.D	EPA 525.2
29	PCB	mg / l	N.D	N.D	N.D	EPA 508
30	PCT	mg / l	N.D	N.D	N.D	EPA 508
31	Zinc as Zn	mg/l	0.28	0.22	0.21	IS 3025: Part - 49
32	Nickel as Ni	mg / l	0.09	0.06	0.08	IS 3025: Part - 54
33	Copper as Cu	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 42
34	Hexavalent Chromium as $\mathrm{Cr}^{+}{ }^{+}$	mg / l	BDL	BDL	BDL	APHA $3500-\mathrm{Cr} . \mathrm{D}$
35	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part - 52
36	Arsenic as As	mg / l	BDL	BDL	BDL	IS 3025: Part - 37
37	Lead as Pb	mg/l	BDL	BDL	BDL	IS 3025: Part - 47
38	Cadmium as Cd	mg / l	BDL	BDL	BDL	IS 3025: Part - 41
39	Manganese as Mn	mg / l	0.62	0.59	0.55	APHA 3111-B
40	Mercury as Hg	mg / l	BDL	BDL	BDL	IS 3025: Part - 48
41	Iron as Fe	mg / l	3.28	3.36	3.41	IS 3025: Part - 53
42	Vanadium as V	mg / l	BDL	BDL	BDL	APHA 3111-D
43	Selenium as Se	mg / l	BDL	BDL	BDL	IS 3025: Part - 56
44	Boron as B	mg/l	0.17	0.21	0.14	IS 3025: Part-57

AHMEDABAD - GUJARAT

- SURFACE WATER QUALITY Location- Vinzol Lake

Sr . No.	Test Parameters	' UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	Hazen	Colourless	Colourless	Colour less	IS 3025: Part - 4
2	Odour (Smell)	-	Agreeable	Agreeable	Agreeable	IS 3025: Part - 5
3	pH	-	7.78	7	7.32	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg/l	N.D	N.D	N.D	IS 3025: Part - 39
5	Suspended Solids (SS)	mg/l	14	18	15	IS 3025: Part - 17
6	Dissolved Oxygen (DO)	mg / l	6.8	6.4	6.5	IS 3025: Part - 38
7	Chemical Oxygen Demand (COD)	mg / l	13	17	15	IS 3025: Part - 58
8	Bio-chemical Oxygen Demand (BOD)	mg / l	6	6	6	IS 3025: Part - 44
9	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	780	790	760	IS 3025: Part-14
10	Nitrite-nitrogen as N	mg / l	0.29	0.22	0.21	APHA 4500- $\mathrm{NO}_{2} . \mathrm{B}$
11	Nitrate-Nitrogen as N	mg/l	3.35	4.28	2.58	APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$
12	Total Nitrogen (N02 + NO3)	mg/l	3.64	4.5	2.79	By Calculation
13	Free Ammonia	mg / l	<0.02	<0.02	<0.02	APHA $4500-\mathrm{NH}_{3} . \mathrm{C}$
14	Total Residual Chlorine	mg/l	<0.1	<0.1	<0.1	IS 3025: Part - 26
15	Cyanide as CN -	mg/l	BDL	BDL	BDL	IS 3025: Part - 27
16	Fluoride as F-	mg/l	0.86	0.9	0.87	IS 3025: Part-60
17	Sulphides as S**	mg/l	<0.1	<0.1	<0.1	IS 3025: Part - 29
18	Dissolved Phosphates as P	mg/l	<0.01	<0.01	<0.01	APHA 4500 - P.D
19	Sodium Absorption Ratio (SAR)	-	6.5	7.4	6.3	By Calculation
20	Total Coliform	MPN/100ml	14	17	13	IS 1622
21	Faecal Coliform	MPN/ 100 ml	19	20	16	IS 1622
22	Total Phosphorous	mg / l	<0.1	<0.1	<0.1	APHA 4500 - P.D
23	Total Kjeldal Nitrogen (TKN)	mg / l	2 -	2 -	2	APHA 4500 - Norg.B
24	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	'mg/l	0.8	1	1	APHA 4500- NH_{3}
25.	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part - 43
26	Surface Active Agent	mg / l	<0.1	<0.1	<0.1	IS 13428
27	Organo-chlorine Pesticides(OCP)	mg / l	N.D	N.D	N.D	EPA 508
28	PAH's	mg / l	N.D	N.D	N.D	EPA 525.2
29	PCB	mg / l	N.D	N.D	N.D	EPA 508
30	PCT	mg / l	N.D	N.D	N.D	EPA 508
31	Zinc as Zn	mg / l	0.11	0.18	0.14	IS 3025: Part - 49
32	Nickel as Ni	mg/l	0.03	0.02	0.03	IS 3025: Part - 54
33	Copper as Cu	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 42
34	Hexavalent Chromium as $\mathrm{Cr}^{+}{ }^{+}$	mg/l	BDL	BDL	BDL	APHA 3500-Cr. D
35	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part - 52
36	Arsenic as As	mg / l	BDL	BDL	BDL	IS 3025: Part-37
37	Lead as Pb	mg / l	BDL	BDL	BDL	IS 3025: Part - 47
38	Cadmium as Cd	mg / l	BDL	BDL	BDL	IS 3025: Part-41
39	Manganese as Mn	mg/l	0.03	0.02	0.04	APHA 3111-B
40	Mercury as Hg	mg / l	BDL	BDL	BDL	IS 3025: Part - 48
41	Iron as Fe	mg/l	0.68	0.59	0.63	IS 3025: Part - 53
42	Vanadium as V	mg / l	BDL	BDL	BDL	APHA 3111 - D
43	Selenium as Se	mg / l	BDL	BDL	BDL	IS 3025: Part - 56
44	Boron as B	mg / l	0.11	0.16	0.14	IS 3025: Part - 57

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

GROUND WATER QUALITY
Location- VIA Vatva

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	Hazen	Colourless	Colourless	Colourless	IS 3025: Part - 4
2	Odour (Smell)	-	Agreeable	Agreeable	Agreeable	IS 3025: Part - 5
3	pH	-	7.12	7.02	7.22	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg / l	BDL	BDL	BDL	IS 3025: Part - 39
5	Suspended Solids (SS)	mg / l	14	11	12	IS 3025: Part - 17
6	Chemical Oxygen Demand (COD)	mg/l	NA	NA	NA	IS 3025: Part - 58
7	Bio-chemical Oxygen Demand (BOD)	mg / l	<2	<2	- <2	IS 3025: Part-44
8	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	<2	<2	<2	IS 3025: Part - 14
9	Nitrite-nitrogen as N	mg / l	1450	1400	1440	APHA $4500-\mathrm{NO}_{2}$. B
10	Nitrate-Nitrogen as N	mg / l	<0.01	<0.01	<0.01	APHA 4500- NO_{3}. B
11	Total Nitrogen (N02 + NO3)	mg / l	3.24	2.85	2.8	By Calculation
12	Free Ammonia.	mg / l	<0.02	<0.02	<0.02	APHA $4500-\mathrm{NH}_{3} . \mathrm{C}$
13	Total Residual Chlorine	mg / l	<0.1	<0.1	<0.1	IS 3025: Part - 26
14	Cyanide as CN ${ }^{\text {- }}$	mg / l	BDL	BDL	BDL	IS 3025: Part-27
15	Fluoride as F-	mg / l	BDL	BDL	BDL	IS 3025: Part - 60
16	Sulphides as S^{-}.	mg/l	<0.1	<0.1	<0.1	IS 3025: Part - 29
17	Dissolved Phosphates as P	mg/l	<0.01	<0.01	<0.01	APHA 4500 - P.D
18	Sodium Absorption Ratio (SAR)	-	<0.1	<0.1	<0.1	By Calculation
19	Total Coliform	MPN/100ml	8.56	7.93	8.03	IS 1622
20	Faecal Coliform .	MPN/ 100 ml	<2	<2	<2	IS 1622
21	Total Phosphorous	mg / l	<0.1	<0.1	<0.1	APHA 4500 - P.D
22	Total Kjeldal Nitrogen (TKN)	mg / l	-<0.1	-<0.1	-<0.1	APHA 4500 - Norg.B
23	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	mg / l	<1	<1	<1	APHA 4500- NH_{3}
24	Phenolic Compourids as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg/l	<0.001	<0.001	<0.001	IS 3025: Part - 43
25	Surface Active Agent	mg / l	BDL	BDL	BDL	IS 13428
26	Organo-chlorine Pesticides(OCP)	mg/l	<0.1	<0.1	<0.1	EPA 508
27	PAH's	mg / l	N.D	N.D	N.D	EPA 525.2
28	PCB	mg / l	N.D	N.D	N.D	EPA 508
29	PCT	mg/l	N.D	N.D	N.D	EPA 508
30	Zinc as Zn	mg / l	N.D	N.D	N.D	IS 3025: Part-49
31	Nickel as Ni	mg / l	<0.01	<0.01	<0.01	IS 3025: Part-54
32	Copper as Cu	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 42
33	Hexavalent Chromium as Cr6+	mg / l	0.02	0.02	0.02	APHA 3500-Cr. D
34	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part-52
35	Arsenic as As	mg / l	BDL	BDL	BDL	IS 3025: Part - 37
36	Lead as Pb	mg / l	BDL	BDL	BDL	IS 3025: Part-47
37	Cadmium as Cd	mg / l	BDL	BDL	BDL	IS 3025: Part - 41
38	Manganese as Mn	mg/l	BDL	BDL	BDL	APHA 3111 - B
39	Mercury as Hg	mg / l	0.05	0.03	0.02	IS 3025: Part - 48
40	Iron as Fe	mg / l	BDL	BDL	BDL	IS 3025: Part - 53
41	Vanadium as V	mg/l	0.13	0.21	0.18	APHA 3111-D
42	Selenium as Se	mg/l	BDL	BDL	BDL	IS 3025: Part - 56
43	Boron as B	- mg/l	BDL	BDL	BDL	IS 3025: Part - 57

AHMEDABAD - GUJARAT

GROUND WATER QUALITY
Location- CETP Green Vatva

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	Hazen	Colourless	Colourless	Colourless	IS 3025: Part - 4
2	Odour (Smell)	-	Agreeable	Agreeable	Agreeable	IS 3025: Part - 5
3	pH	-	7.12	7.02	7.22	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg/l	BDL	BDL	BDL	IS 3025: Part - 39
5	Suspended Solids (SS)	mg/l	14	11	12	IS 3025: Part - 17
6	Chemical Oxygen Demand (COD)	mg/l	NA	NA	NA	IS 3025: Part - 58
7	Bio-chemical Oxygen Demand (BOD)	mg / l	-<2	-<2	- <2	IS 3025: Part - 44
8	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	<2	<2	<2	IS 3025: Part - 14
9	Nitrite-nitrogen as N	mg / l	1450	1400	1440	APHA $4500-\mathrm{NO}_{2} . \mathrm{B}$
10	Nitrate-Nitrogen as N	mg / l	<0.01	<0.01	<0.01	APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$
11	Total Nitrogen ($\mathrm{N} 02+\mathrm{NO}$)	- mg / l	3.24	2.85	2.8	By Calculation
12	Free Ammonia .	mg/l	<0.02	<0.02	<0.02	APHA 4500- $\mathrm{NH}_{3} . \mathrm{C}$
13	Total Residual Chlorine	. mg/l	<0.1	<0.1	<0.1	IS 3025: Part - 26
14	Cyanide as CN -	mg / l	BDL	BDL	BDL	IS 3025: Part - 27
15	Fluoride as F-	mg / l	- BDL	-BDL	- BDL	IS 3025: Part-60
16	Sulphides as S*	mg / l	<0.1	<0.1	<0.1	IS 3025: Part - 29
17	Dissolved Phosphates as P	mg/l	<0.01	<0.01	<0.01	APHA 4500 - P.D
18	Sodium Absorption Ratio (SAR)	-	<0.1	<0.1	<0.1	By Calculation
19	Total Coliform	MPN/100ml	8.56	7.93	8.03	IS 1622
20	Faecal Coliform	MPN/100ml	<2	<2	<2	IS 1622
21	Total Phosphorous	mg/l	<0.1	<0.1	<0.1	APHA 4500 - P.D
22	Total Kjeldal Nitrogen (TKN)	mg / l	<0.1	<0.1	<0.1	APHA 4500 - Norg. ${ }^{\text {B }}$
23	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	mg / l	<1	<1	<1	APHA 4500- NH_{3}
24	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part-43
25	Surface Active Agent	mg / l	BDL	BDL	BDL	IS 13428
26	Organo-chlorine Pesticides(OCP)	mg / l	<0.1	<0.1	<0.1	EPA 508
27	PAH's	mg / l	N.D	N.D	N.D	EPA 525.2
28	PCB	mg / l	N.D	N.D	N.D	EPA 508
29	PCT	mg / l	N.D	N.D	N.D	EPA 508
30	Zinc as Zn	mg / l	N.D	N.D	N.D	IS 3025: Part - 49
31	Nickel as Ni	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 54
32	Copper as Cu	mg/l	<0.01	<0.01	<0.01	IS 3025: Part-42
33	Hexavalent Chromium as $\mathrm{Cr}^{+}{ }^{+}$	mg / l	0.02	0.02	0.02	APHA $3500-\mathrm{Cr} . \mathrm{D}$
34	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part - 52
35	Arsenic as As	mg / l	BDL	BDL	BDL	IS 3025: Part-37
36	Lead as Pb	mg/l	BDL	BDL	BDL	IS 3025: Part - 47
37	Cadmium as Cd	mg/l	BDL	BDL	BDL	IS 3025: Part - 41
38	Manganese as Mn	mg / l	BDL	BDL	BDL	APHA 3111-B
39	Mercury as Hg	mg / l	0.05	0.03	0.02	IS 3025: Part - 48
40	Iron as Fe	mg / l	BDL	BDL	BDL	IS 3025: Part - 53
41	Vanadium as V	mg / l	0.13	0.21	0.18	APHA 3111-D
42	Selenium as Se	mg/l	BDL	BDL	BDL	IS 3025: Part - 56
43	Boron as B	mg / l	BDL	BDL	BDL	IS 3025: Part - 57

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

GROUND WATER QUALITX Location- Hemline textiles-Narol

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	Hazen	Colourless	Colourless	Colourless	IS 3025: Part-4
2	Odour (Smell)	-	Agreeable	Agreeable	Agreeable	IS 3025: Part - 5
3	pH	-	7.1	7.2	7.63	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg/l	BDL	BDL	BDL	IS 3025: Part - 39
5	Suspended Solids (SS)	mg / l	8	10	6	IS 3025: Part - 17
6	Chemical Oxygen Demand (COD)	mg / l	NA	NA	NA	IS 3025: Part - 58
7	Bio-chemical Oxygen Demand (BOD)	mg / l	<2	<2	<2	IS 3025: Part-44
8	Conductivity (EC)	, $\mu \mathrm{S} / \mathrm{cm}$	<2	<2	<2	IS 3025: Part - 14
9	Nitrite-nitrogen as N	mg / l	1820	1800	1860	APHA 4500- $\mathrm{NO}_{2} . \mathrm{B}$
10	Nitrate-Nitrogen as N	mg / l	<0.01	<0.01	<0.01	APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$
11	Total Nitrogen (N02 + NO3)	mg/l	5.52	6.27	5.48	By Calculation
12	Free Ammonia	mg / l	<0.02	<0.02	<0.02	APHA 4500- $\mathrm{NH}_{3} \mathrm{C}$
13	Total Residual Chlorine	mg / l	<0.1	<0.1	<0.1	IS 3025: Part-26
14	Cyanide as CN	mg / l	BDL	BDL	BDL	IS 3025: Part-27
15	Fluoride as F-	mg / l	- BDL	- BDL	- BDL	IS 3025: Part-60
16	Sulphides as S*	mg/l	<0.1	<0.1	<0.1	IS 3025: Part - 29
17	Dissolved Phosphates as P	mg/l	<0.01	<0.01	<0.01	APHA 4500 - P.D
18	Sodium Absorption Ratio (SAR)	-	<0.1	<0.1	<0.1	By Calculation
19	Total Coliform	MPN/100ml	20.36	23.16	21.4	IS 1622
20	Faecal Coliform	MPN/ 100 ml	<2	<2	<2	IS 1622
21	Total Phosphorous	mg / l	<0.1	<0.1	<0.1	APHA 4500 - P.D
22	Total Kjeldal Nitrogen (TKN)	mg / l	-<0.1	- <0.1	$\sim^{<0.1}$	APHA 4500-Norg. ${ }^{\text {B }}$
23	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	mg / l	<1	<1	<1	APHA 4500- NH_{3}
24	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part - 43
25	Surface Active Agent	mg / l	BDL	BDL	BDL	IS 13428
26	Organo-chlorine Pesticides(OCP)	mg / l	<0.1	<0.1	<0.1	EPA 508
27	PAH's	mg / l	N.D	N.D	N.D	EPA 525.2
28	PCB	mg / l	N.D	N.D	N.D	EPA 508
29	PCT	mg / l	N.D	N.D	N.D	EPA 508
30	Zinc as Zn	mg / l	N.D	N.D	N.D	IS 3025: Part - 49
31	Nickel as Ni	mg / l	<0.01	<0.01	<0.01	IS 3025: Part-54
32	Copper as Cu	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 42
33	Hexavalent Chromium as Cr6+	mg / l	0.03	0.03	0.03	APHA 3500-Cr. D
34	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part - 52
35	Arsenic as As	mg / l	BDL	BDL	BDL	IS 3025: Part - 37
36	Lead as Pb	mg / l	BDL	BDL	BDL	IS 3025: Part - 47
37	Cadmium as Cd	mg / l	BDL	BDL	BDL	IS 3025: Part - 41
38	Manganese as Mn	mg / l	BDL	BDL	BDL	APHA 3111 - B
39	Mercury as Hg	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 48
40	Iron as Fe	mg / l	BDL	BDL	BDL	IS 3025: Part - 53
41	Vanadium as V	mg / l	0.09	0.08	0.11	APHA 3111-D
42	Selenium as Se	mg / l	BDL	BDL	BDL	IS 3025: Part - 56
43	Boron as B	mg / l	BDL	BDL	BDL	IS 3025: Part - 57

Sampling and Analysis of Ambient Air Quality and Water Quality in selected Industrial/Cluster Areas

AHMEDABAD - GUJARAT

GROUND WATER QUALITY Location- Swan Energy-Narol

Sr. No.	Test Parameters	UOM	Results			Test Method
			4.6.16	6.6.16	8.6.16	
1	Colour	Hazen	Colourless	Colourless	Colourless	IS 3025: Part - 4
2	Odour (Smell)	. -	Agreeable	Agreeable	Agreeable	IS 3025: Part - 5
3	pH	-	6.12	6.09	6.21	IS 3025: Part - 11
4	Oil \& Grease (0\&G)	mg/l	BDL	BDL	BDL	IS 3025: Part - 39
5	Suspended Solids (SS)	mg / l	12	8	9	IS 3025: Part - 17
6	Chemical Oxygen Demand (COD)	mg / l	NA	NA	NA	IS 3025: Part - 58
1	Bio-chemical Oxygen Demand (BOD)	mg / l	- <2	- <2	r <2	IS 3025: Part-44
8	Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	<2	<2	<2	IS 3025: Part - 14
9	Nitrite-nitrogen as N	mg / l	2100	2150	2160	APHA 4500- $\mathrm{NO}_{2} . \mathrm{B}$
10	Nitrate-Nitrogen as N	mg / l	<0.01	<0.01	<0.01	APHA 4500- $\mathrm{NO}_{3} . \mathrm{B}$
11	Total Nitrogen (N02 + NO3)	mg / l	1.56	1.24	1.63	By Calculation
12	Free Ammonia	mg / l	<0.02	<0.02	<0.02	APHA 4500- $\mathrm{NH}_{3} . \mathrm{C}$
13	Total Residual Chlorine	mg / l	<0.1	<0.1	<0.1	IS 3025: Part-26
14	Cyanide as CN -	mg / l	BDL	BDL	BDL	IS 3025: Part - 27
15	Fluoride as F-	mg / l	- BDL	- BDL	- BDL	IS 3025: Part - 60
16	Sulphides as S	mg / l	0.7	0.7	0.7	IS 3025: Part - 29
17	Dissolved Phosphates as P	mg/l	<0.01	<0.01	<0.01	APHA 4500 - P.D
18	Sodium Absorption Ratio (SAR)	-	<0.1	<0.1	<0.1	By Calculation
19	Total Coliform	MPN/100ml	2.56	3.4	2.4	IS 1622
20	Faecal Coliform	MPN/100ml	<2	<2	<2	IS 1622
21	Total Phosphorous	mg / l	<0.1	<0.1	<0.1	APHA 4500 - P.D
22	Total Kjeldal Nitrogen (TKN)	mg / l	<0.1	<0.1	<0.1	APHA 4500 - Norg.B
23	Total Ammonia ($\mathrm{NH}_{4}+\mathrm{NH}_{3}$)-Nitrogen	mg / l	<1	<1	<1	APHA 4500- NH_{3}
24	Phenolic Compounds as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	IS 3025: Part - 43
25	Surface Active Agent ${ }^{\text {' }}$	mg / l	BDL	BDL	BDL	IS 13428
26	Organo-chlorine Peșticides(OĊP)	mg/l	<0.1	<0.1	<0.1	EPA 508
27	PAH's	- mg/l	N.D	N.D	N.D	EPA 525.2
28	PCB	mg / l	N.D	N.D	N.D	EPA 508
29	PCT	mg / l	N.D	N.D	N.D	EPA 508
30	Zinc as Zn	mg / l	N.D	N.D	N.D	IS 3025: Part - 49
31	Nickel as Ni	mg/l	<0.01	<0.01	<0.01	IS 3025: Part - 54
32	Copper as Cu	mg / l	<0.01	<0.01	<0.01	IS 3025: Part - 42
33	Hexavalent Chromium as $\mathrm{Cr}^{+}{ }^{+}$	mg / l	<0.01	<0.01	<0.01	APHA 3500-Cr. D
34	Total Chromium as Cr	mg / l	BDL	BDL	BDL	IS 3025: Part-52
35	Arsenic as As	mg/l	BDL	BDL	BDL	IS 3025: Part - 37
36	Lead as Pb	mg / l	BDL	BDL	BDL	IS 3025: Part - 47
37	Cadmium as Cd	mg / l	BDL	BDL	BDL	IS 3025: Part - 41
38	Manganese as Mn	mg/l	BDL	BDL	BDL	APHA 3111 - B
39	Mercury as Hg	mg/l	<0.01	<0.01	<0.01	IS 3025: Part - 48
40	Iron as Fe	mg / l	BDL	BDL	BDL	IS 3025: Part - 53
41	Vanadium as V	mg/l	0.05	0.08	0.09	APHA 3111-D
42	Selenium as Se	mg / l	BDL	BDL	BDL	IS 3025: Part - 56
43	Boron as B	mg/l	BDL	BDL	BDL	IS 3025: Part - 57

