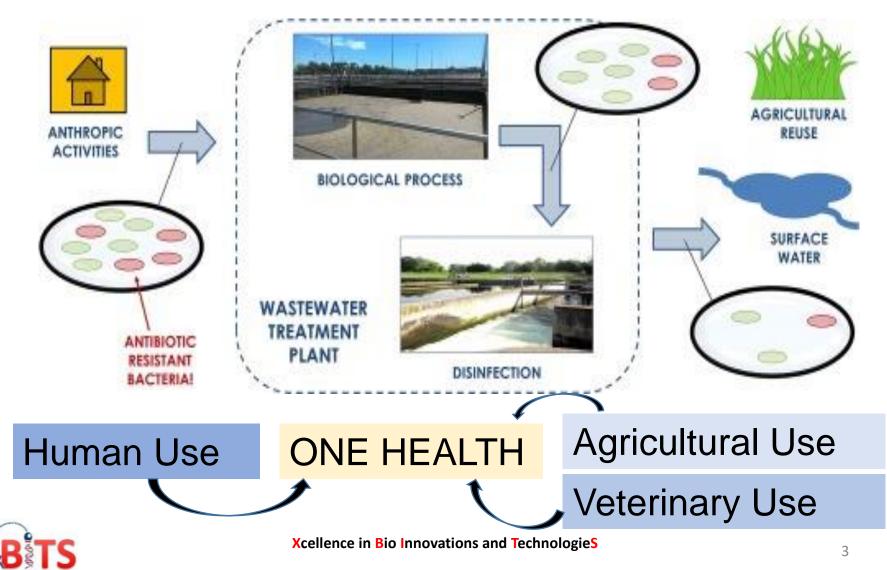


RightBiotic: Detection platform for Antibiotic Resistant Bacteria

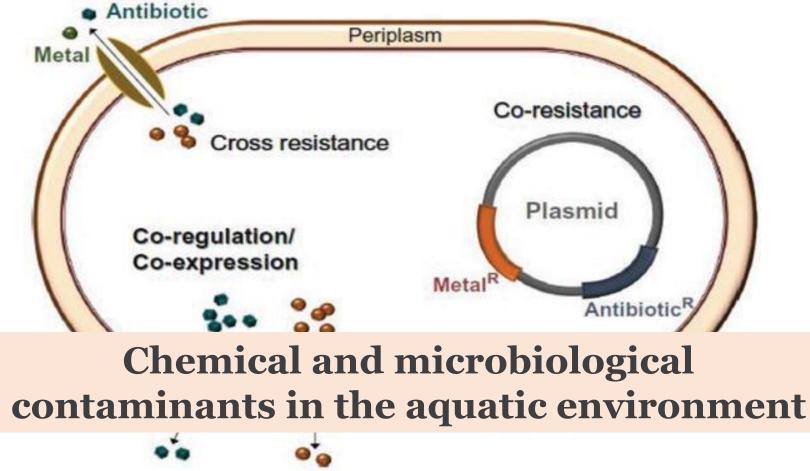
A radical innovation

Rapid system for detection of bacterial pathogens and their sensitivity to a panel of antibiotics

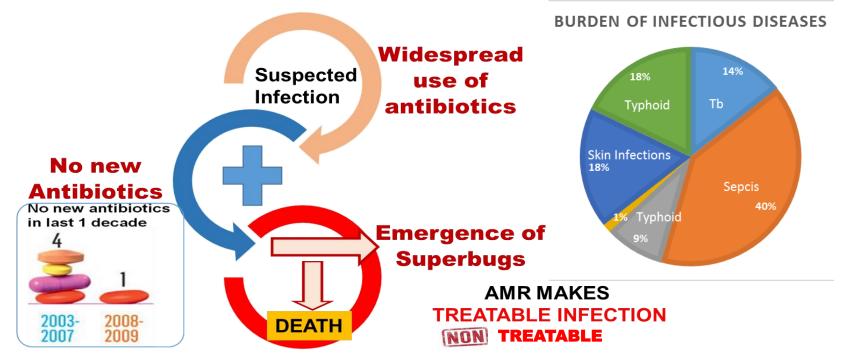
Save the Environment and Save Lives !!



Outline of the Presentation


- 1. Gap Identified: Rationale
- 2. Requirements of a rapid system
- 3. Solution: RightBiotic-About the Product
- 4. Results obtained till date
- 5. Future Prospective
- 6. Conclusion

The environmental connection


Co-occurrence of metal and antibiotic resistance

Rationale

An understanding of the incidence of diseases is a key for decision making in prescribing the right antibiotic in timely manner for clinical care & avoid Anti Microbial Resistance (AMR)

www://xcelbits.com/

Confidential, Restricted circulation only

Xcellence in Bio Innovations and TechnologieS

Integrated antibiotic resistance surveillance

WHO's global action plan on antimicrobial resistance mandates AR surveillance

European Center for Disease Prevention tracked the prevalence of antibiotic resistant bacteria present in blood and cerebrospinal fluid samples from patients in 30 countries

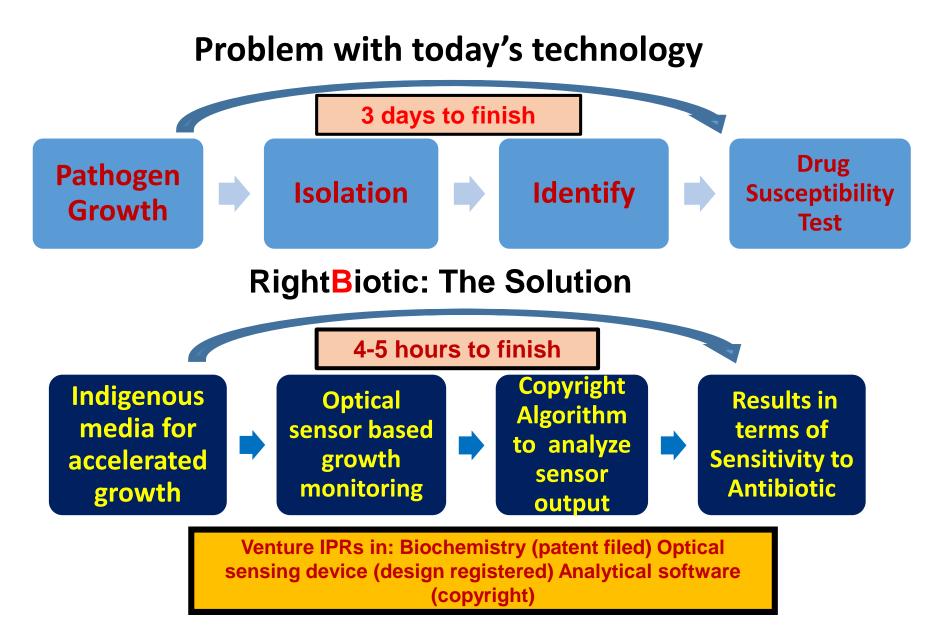
Amount of ARGs in <u>wastewater</u> from seven European countries matched prevalence of ARBs found in patients in those regions

Message is Loud and Clear

Another study from University of South California concluded that *Engineered water treatment systems end up being sort of a hot-bed for antibiotic resistance (AR) or Anti Microbial Resistance (AMR)*

These studies suggests that wastewater treatment plants might act as a breeding ground for antibiotic resistance

They also highlight the need to implement regular surveillance and control measures, which may need to be *tailored for specific geographic regions*


RightBiotic: Fastest Antibiotic Finder

A radical innovation

Rapid Antibiotic Resistance Testing System

Confidential, Restricted circulation only

www://xcelbits.com/

Xcellence in Bio Innovations and TechnologieS

RightBiotic comprises of:

RightBiotic Machine

Optical Reader

RightBiotic Kit

- Pre loaded antibiotic strips for UTI
- Pi and P1-P6 strips
- Dehydrated BITGEN vial (1Pc)
- Syringe (1Pc)
- Sterile Water ampule (1Pc)
- Filter (1Pc)

Sample prep. time-20' Incubation time- 2+3hrs **Optical readout-**10' Analysis of results- 10'

Identification of

Right Antibiotic for

treatment < 5hrs

01/10/15 03:35:22 PM

Bacteriat Mix-Culture Resistant to AMX Resistant to

GE

CPM

OFX CEX

CTR

PIP

KAN

CEU

TOB

LE

UTI +ve 1888888 cell per ml

Resistant to

Resistant to

Resistant to

Resistant to Resistant to

Pasistant to

Sensitive to Resistant to

Resistant to

Resistant to

Resistant to

Pid:73

UTI -ve ABORT

Resistant to AMP

01/10/15 03:39:01

Xcellence in Bio Innovations and TechnologieS

10

Quick Hygienic Survey of Musi River

Hyderabad's once mighty Musi has been reduced to a giant sewer

- Once a flourishing river, Musi is now dying a slow death due to excessive encroachment and extreme pollution
- As it flows through Hyderabad, it turns into a giant sewer, filled with garbage, industrial waste, chemicals, pharmacophores, APIs (active pharmaceutical ingredients) like antibiotics as major pollutants
- Concentration of antibiotics in some river waters has been reported to be much higher than what is considered safe
- According to the AMR industry alliance standards, safe levels range from 20ng-32µg/litre, depending on antibiotic

Role of the natural environment in the antimicrobial resistance problem

- According to a report 65% of 711 sampled sites tested for presence of antibiotics had unacceptably high levels
- Highest concentration of antibiotic Ciprofloxacin (31 mg/L) found in water bodies located in Patancheru area in Hyderabad
- Norfloxacin, Cetrizine, Terbinafine, Citalopram & Enoxacin are other antibiotics also found in Musi water [Riebl & Davy 2013]
- Antibiotic contamination of rivers could be an important contributor, says Alistair Boxall, of York Environmental Sustainability Institute
- A study released in March 2019 showed that a large number of ARBs in River Ganga are resistant to commonly used antibiotics (BHU)

H'ble National Green Tribunal ordered a quick hygienic survey of Musi vide order, OA No.426/2018, dt 5/4/2019 (Conducted in collaboration with CPCB and TSPCB)

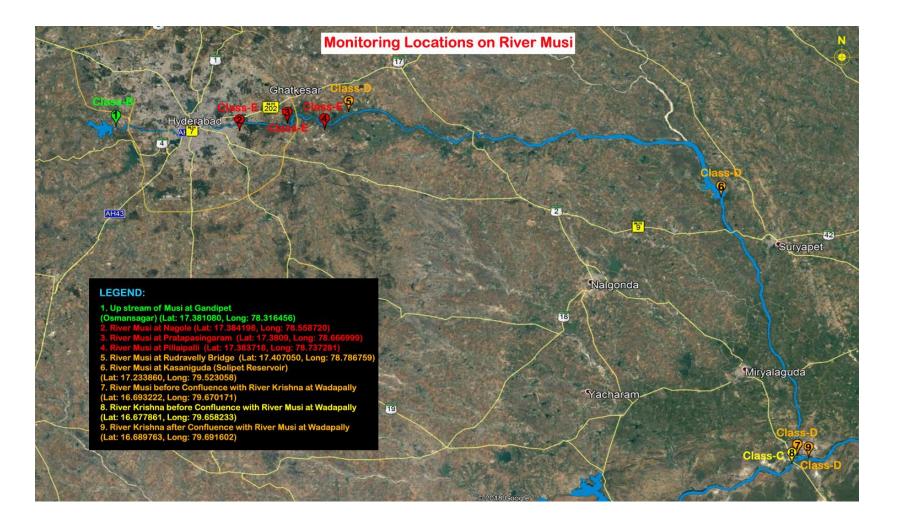
This study comes in wake of a commitment taken by member states at the World Health Assembly on May 23, 2019.

This resolution urges member states to strengthen

- 1. Infection prevention and control measures, including water sanitation and hygiene
- 2. Participation in global AMR surveillance system
- 3. Ensure prudent use of quality-assured antimicrobials
- 4. Support multi-sectoral annual self-assessment survey

Present study: Objectives

- 1. Characterize and identify bacteria present in the water samples collected from pre-decided sites (N=9) over a 3 month period
- 2. Identify AMR pattern of different bacterial strains isolated
- 3. Sample extraction for subsequent analysis by TSPCB for presence of antibiotics/APIs/ pharmacophores in river water
- 4. Conduct a one-day training program for officials of CPCB and other state PCBs
- 5. Develop guidelines for hygienic survey of river waters

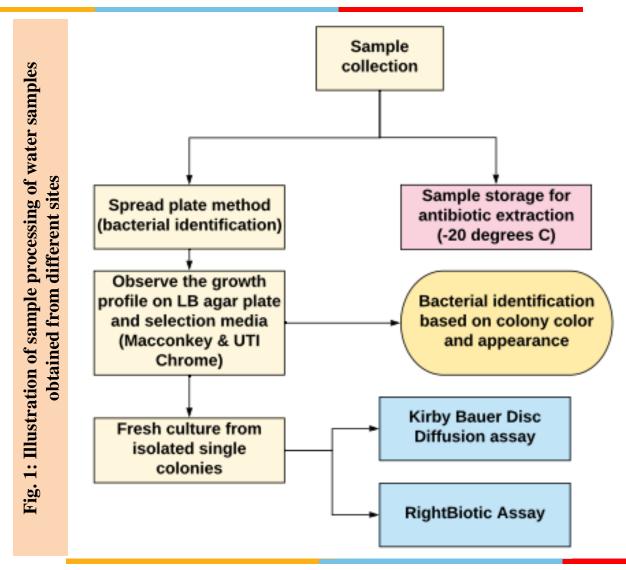


Sample collection sites

Sl. No.	Sample collection Site	Coordinates		
1	Gandipet (Osman Sagar)	17°23′N 78°18′E		
2	Nagole	17°31′N 78°55′E		
3	Pratapsingaram	17°38′N 78°66′E		
4	Pillaipalli	17°004′N 78°60′E		
5	Rudravelly	17°.4109` N, 78.7852` E		
6	Kasaniguda	17°.4109`N, 79° 31' E		
7	Musi at Wadapally (Before confluence)	16.698°N 79.659°E		
8	Krishna at Wadapally (Before confluence)	16.698°N 79.659°E		
9	Musi+Krishna at Wadapally (After	16.698°N 79.659°E		
	confluence)			

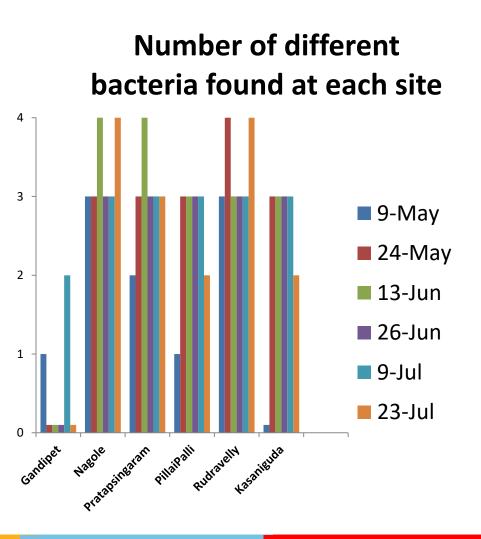
Map of Musi river depicting the monitoring locations

Sample Collection Schedule

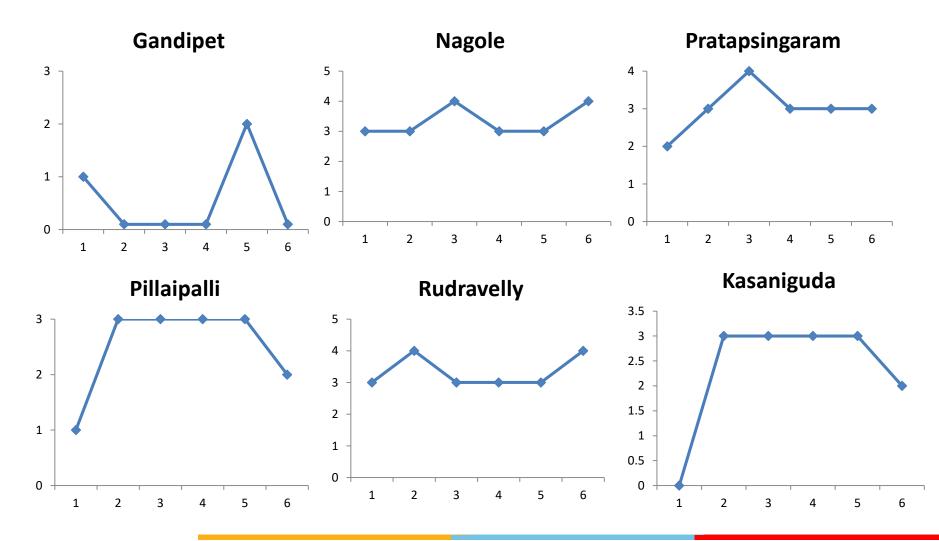


Date	Proposed Activity				
9 th May 2019	Sampling at all 9 locations				
23 rd May 2019	Sampling at all 9 locations				
13 th June 2019	Sampling at all 9 locations				
Interim Report Submitted to CPCB on 3 rd July 2019					
26 th Jun 2019	Sampling at all 9 locations				
9 th July 2019	Sampling at all 9 locations				
23 th July 2019	Sampling at all 9 locations				

Note : Sampling completed and total of 9x6=54 samples analyzed

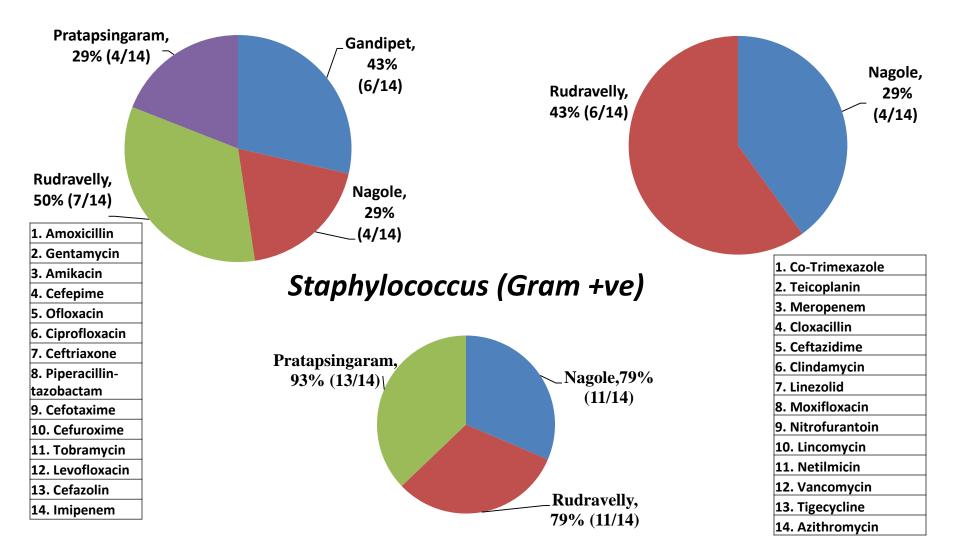

Sample processing and further testing

Results: Findings of the study



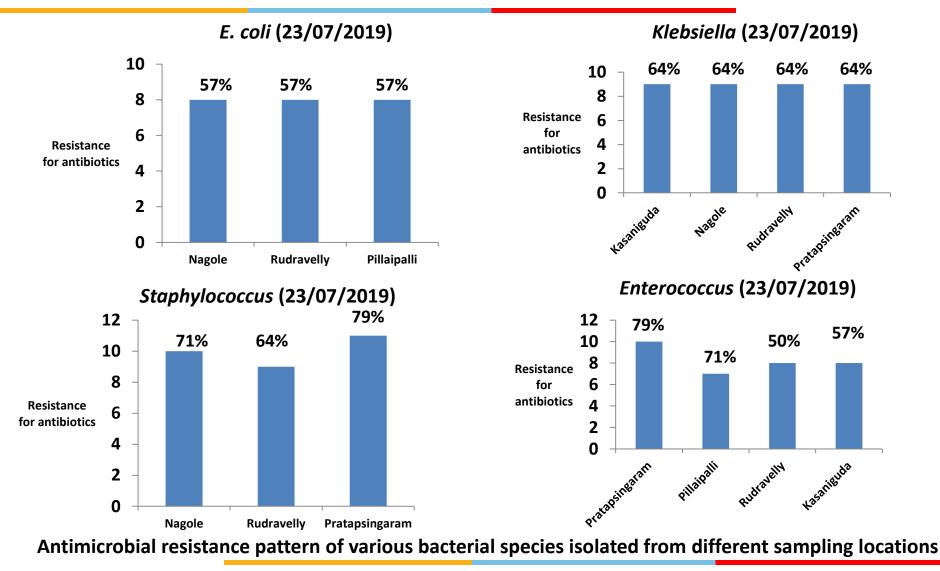
- Types and number of bacteria at each site
- AMR pattern (by two methods)
- Longitudinal changes in number of bacteria in water samples
- Applicability of the rapid test on RightBiotic platform for "Hygiene survey" of river water and other natural water reserves

Change in Bacterial Load over 10 week period

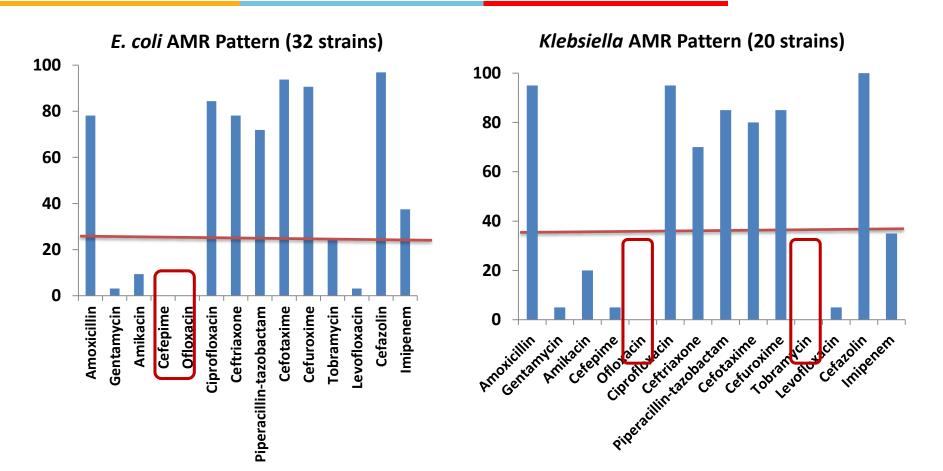

BITS Pilani, Hyderabad Campus

achieve

Antibiotic Resistance Pattern (09/05/2019)

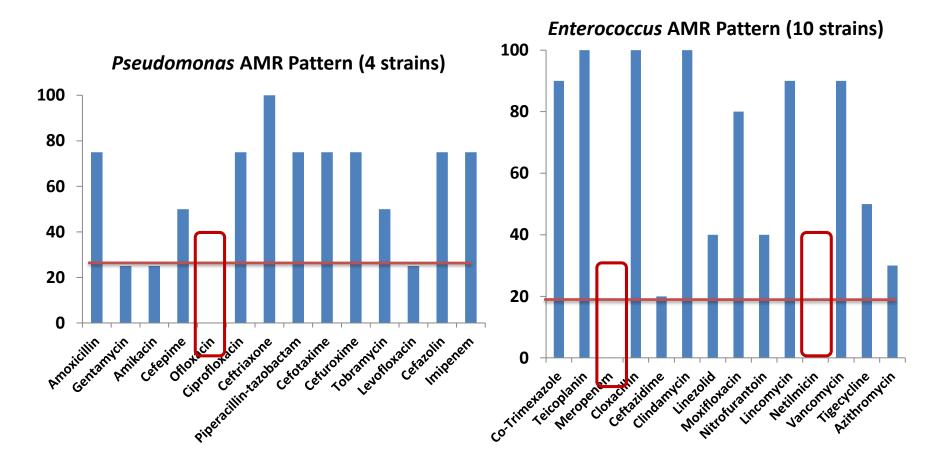

E. coli (Gram –ve)

Klebsiella (Gram -ve)



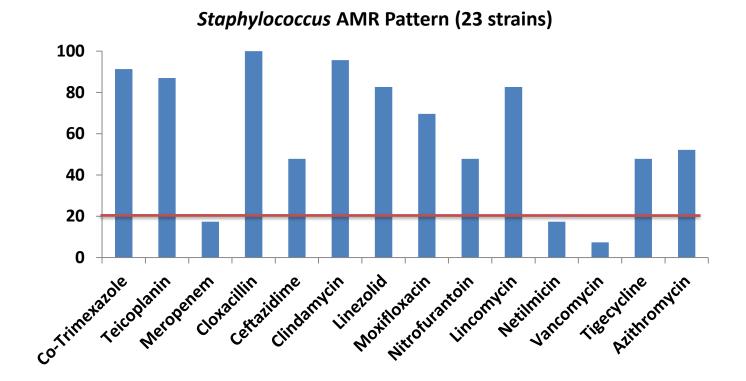
Antimicrobial resistance pattern of various bacterial species

Antimicrobial resistance pattern of various bacterial strains

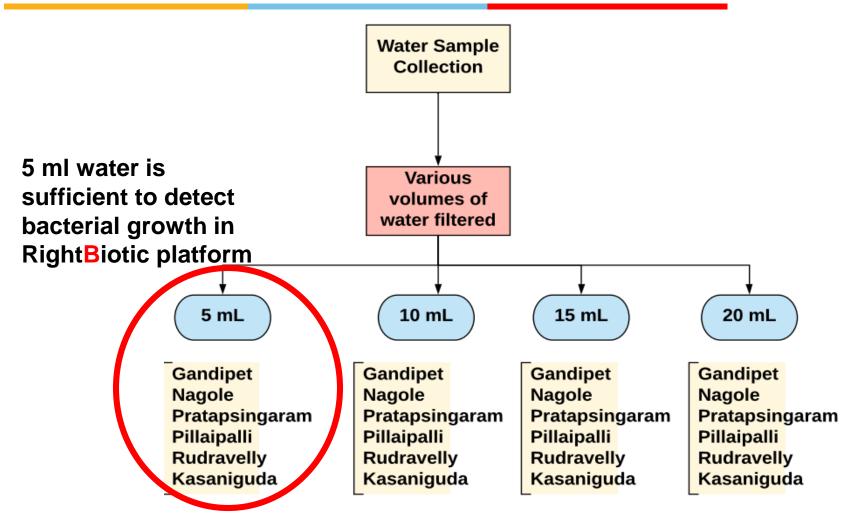


All *E.coli* strains tested were sensitive to Cefepime and Ofloxacin. All *Klebsiella* strains tested were sensitive to Ofloxacin and Tobramycin

Antimicrobial resistance pattern of various bacterial strains



All the *Pseudomonas* strains tested were sensitive to Ofloxacin. All the *Enterococcus* strains tested were sensitive to Meropenem and Netilmicin


Antimicrobial resistance pattern of various bacterial strains

All the stains of Staphylococcus were resistant to all the tested antibiotics

Optimization of water volume required for RightBiotic Assay

Optimization of minimum volume required to perform RightBiotic assay in the field

Comparison of AST profile between RightBiotic and Kirby Bauer Disc Diffusion Method

Date	9/5/19	24/5/19	13/6/19	26/6/19	9/7/19	23/07/19
Gandipet	100% (1)	(0)	(0)	(0)	73% (2)	(0)
Nagole	57% (3)	67% (3)	67% (4)	61% (3)	45% (3)	37% (4)
Pratapsingham	83% (2)	83% (3)	92% (4)	45% (3)	50% (3)	53% (3)
Pillaipalli	100% (1)	100% (3)	100% (3)	50% (3)	52% (3)	100% (2)
Rudravelly	84% (3)	100% (4)	100% (3)	56% (3)	65% (3)	54% (4)
Kasaniguda	NA (0)	100% (3)	100% (3)	95% (3)	94% (3)	100% (2)
Musi at Wadapally	(0)	(0)	(0)	(0)	(0)	(0)
Krishna at						
Wadapally (BC)	(0)	(0)	(0)	(0)	(0)	(0)
Musi + Krishna at						
Wadapally (AC)	(0)	(0)	(0)	(0)	(0)	(0)

achieve

Conclusions

 E. coli, Klebsiella, Enterococcus, Pseudomonas and Staphylococcus were detected

 Extensive MDR (resistance to 2 or more,) has bee was observed against frontline antibiotics.
(29 to 93%, of the 14 antibiotics tested)

VITEK 2	MicroPro BCS	RightBiotic		
Growth based method	Turbidity based method	Growth & turbidity based method		
Turbidity needs to be adjusted-human intervention	Turbidity needs to be adjustedhuman intervention	Not required		
Accessory Instruments	Accessory Instruments:	Accessory Instruments		
required: Centrifuge and	Laminar flow	required: None		
laminar flow				
Infrastructure: Air-	Infrastructure: Air-	None		
conditioned labs	conditioned labs			
Not Portable	Not portable	Portable		
Cost of equipment:	Cost of equipment:	Cost of equipment:		
Rs 15-29L	Rs 06L	Rs 04L		
Cost/Test: Rs 600-800	Cost/Test: Rs 500-600	Cost/Test: Rs 550		
Total time required:	Total time required:	Total time required:		
~ 26-29hrs	~ 23hrs	4-5hrs only		

6 tims faster

Lower Escalation

MARICO FOUNDATION AWARD FUNCTION 2016:

Right

Prof. Suman Kapur with Mr. Sam Balsara, Founder, Chairman and Managing Director of Madison World and Madison Communications at the award function of Marico Foundation in March 2016

RICOH EDUCATION EXCELLENCE AWARDS 2016:

xBITS is the winner of Ricoh Education Excellence Award that was held Feb' 2016. The event received an overwhelming response and was atten 👔 over 150 dignitaries and wide range of jury members from various institu

Xcellence in Bio Innovations and TechnologieS

BITS

Acclience in Div Innovations and Technologies

RightBiotic Differentiators

- 1. **Rapid** assay
- 2. Obliterates the need for long wait
- 3. Leads to specific and appropriate treatment
- 4. Allows evaluation of multiple antibiotics
- 5. Provides immediate, on-spot results (~5 hours)
- 6. Minimizes human error
- 7. **Reports Intermediate sensitivity also**
- 8. No need for any specialized equipment or training
- 9. Works on mixed strain consortium
- **10.** Most importantly It is a "Made in India" Technology

News » India News » Superbug-related death spurs drug regulator warning

Superbug-related death spurs drug regulator warning

Sushmi Deyl TNN | Updated: Jan 18, 2017, 03.16 AM IST

Representative image of a superbug. (Reuters Photo)

- Drugs Controller General of India (DCGI) has asked companies to carry specified warnings to avoid antimicrobial resistance.
- To check irrational use of antibiotics, the government has introduced a 'red line' differentiating high-end antibiotics from other drugs.
- Govt is running campaigns against irrational prescriptions

