REPORT OF JOINT INSPECTION-CUM-MONITORING OF COMMON EFFLUENT TREATMENT PLANT (CETP) VAPI INDUSTRIAL AREA, GUJARAT

(As per order of Hon'ble National Green Tribunal (NGT), Principal Bench, New Delhi dated 11.01.2019 in Original Application NO. 95 of 2018 (Aryavart Foundation Vs. M/s. Vapi Green Enviro Ltd. (CETP, Vapi) & Ors)

> Prepared By

CENTRAL POLLUTION CONTROL BOARD Regional Directorate (West), Vadodara GUJARAT POLLUTION CONTROL BOARD Regional Office, Vapi

FOR SUBMISSION TO

HON'BLE NATIONAL GREEN TRIBUNAL PRINCIPAL BENCH, NEW DELHI

MAY 2019

CONTENT

Sr. No.	Sections	Page No
1.0	BACKGROUND	1
2.0	COMMON EFFLUENT TREATMENT PLANT (CETP), VAPI	2
2.1	PRESENT TREATMENT SCHEME OF CETP	3
2.2	DISPOSAL OF TREATED EFFLUENT	7
2.3	MAJOR UP-GRADATION DONE AT CETP, VAPI	8
2.4	UPGRADATION/CAPACITY ENHANCEMENT OF PLAN OF CETP	9
3.0	MONITORING OF CETP, VAPI	12
3.1	RECENT JOINT MONITORING	12
3.2	PREVIOUS MONITORING	13
4.0	OBSERVATIONS	13
5.0	RECOMMENDATIONS	16
	Annexures	
Annexure-1	Photographs	17-19
Annexure-2	CPCB Monitoring Results	20-24
Annexure-3	GPCB Monitoring Results	25-30

REPORT OF JOINT INSPECTION-CUM- MONITORING OF COMMON EFFLUENT TREATMENT PLANT (CETP) VAPI INDUSTRIAL AREA, GUJARAT

1.0 BACKGROUND:

Hon'ble National Green Tribunal, Principal Bench, New Delhi passed order on 11.01.2019 in Original Application (OA) NO. 95 of 2018 in the matter of Aryavart Foundation Vs. M/s Vapi Green Enviro Ltd. (CETP, Vapi) & Ors. The matter was regarding discharge of untreated/partially treated trade effluent by more than 500 industrial units in Vapi industrial cluster into River Damanganga. There are non-compliances of the industries, CETP, Vapi, and pollution is causing threat to aquatic life in River Damanganga and in the Arabian Sea.

In the said matter vide order dated 11.01.2019, Hon'ble NGT has given various directions to execute different tasks and formation of committees for execution of these tasks as per the para no. 55 of the order.

As per the para no. 55 (iv), it was directed to CPCB to undertake jointly with GPCB extensive surveillance and monitoring of CETP at regular interval of three months and submit its report to this Tribunal.

Accordingly, joint inspection-cum-monitoring on 12.02.2019 during the visit of the five member committee constituted as per parano. 55 (i) comprising representatives/nominees of Central Pollution Control Board (CPCB), Indian Institute of Management (IIM) Ahmedabad, Indian Institute of Technology (IIT) Gandhinagar, National Environmental Engineering Research Institute (NEERI) Nagpur and Gujarat Pollution Control Board (GPCB) to assess the extent of damage and cots of restoration of the environment and individual accountability of CETP and polluting industrial units.

1

2.0 COMMON EFFLUENT TREATMENT PLANT (CETP), VAPI

CETP is located near National Highway- 8, River Damanganga, GIDC Estate, Vapi, Dist-Valsad. The CETP, Vapi was designed by National Environmental Engineering Research Institute (NEERI), Nagpur in collaboration with Kirloskar consultants for a capacity of 55 MLD. It was commissioned in January 1997. The CETP is designed for the parameters:

Parameter(s) mg/l	Influent	Effluent
рН	6.5-8.5	6.5-8.5
BOD	400	100
COD	1000	250
SS	300	100

Table: 1 CETP DESIGNED PARAMETER

M/s Vapi Green Enviro Ltd (VGEL) formerly known as Vapi Waste & Effluent Management Company Ltd (VWEMCL) operates the CETP and a TSDF. The company incorporated in pursuant to the suggestions of Hon'ble High Court of Gujarat to manage the CETP and other environment related activities. Accordingly the company took over the CETP built by Gujarat Industrial Development Corporation (GIDC) in 1998. The Board of directors of M/s VGEL consist of GIDC Vice Chairman and Managing Director as nominee director and other directors including Industries.

The CETP Vapi is receiving the partially treated effluent from member industries (present members-519) which are located in GIDC area, and also it is receiving domestic wastewater from GIDC residential areas. The location of GIDC, CETP and River Damanganga is given in **Figure-1**.

Figure 1: Location of Vapi Industrial Area, CETP and River Damanganga

2.1 PRESENT TREATMENT SCHEME OF CETP

The wastewater treatment consists of pre-primary, primary (physico-chemical treatment) and secondary biological oxidation treatment process based on activated sludge process. The final treated effluent is discharged into the River Damanganga.

The operational units of the CETP are:

Pre-primary: Auto screen, Grit Chamber (2 nos.), Equalization Tank (3 nos.)Primary treatment: Flash Mixer (2 nos.) & Flocculator (4 nos.) & Primary Clarifiers (2 nos.)Secondary Treatment: Aeration tanks (2 nos.), Secondary Clarifier (2 nos.)

The sludge is handled through sludge thickeners, centrifuges and sludge drying beds and ultimately disposed to TSDF of M/s VGEL.

M/s VGEL has established four stage forced circulation common multiple effect evaporator (CMEE) of 200 KLD capacity in March 2015, within the CETP premises. The CMEE is provided to handle refractory COD & high strength TDS effluent streams generated from pesticides, bulk drugs, dyes intermediate etc. The CMEE has been designed to handle TDS ranging from 3 – 12.5% and COD: 20,000 – 1,00,000 mg/L. Presently, around 86 nos. of industries have become members with common MEE and reportedly booked quantity of effluent is app. 157 KLD from member industries. The effluent from member industries are collected and conveyed to MEE through tankers. Spray dryer (4 KL/hr) is in operation for handling the concentrate generated from CMEE.

The various unit operations & processes handled at the CETP for handling concentrated & lean effluent streams are depicted in **Figure 2**. Few photographs of CETP are given in **Annexure-1**.

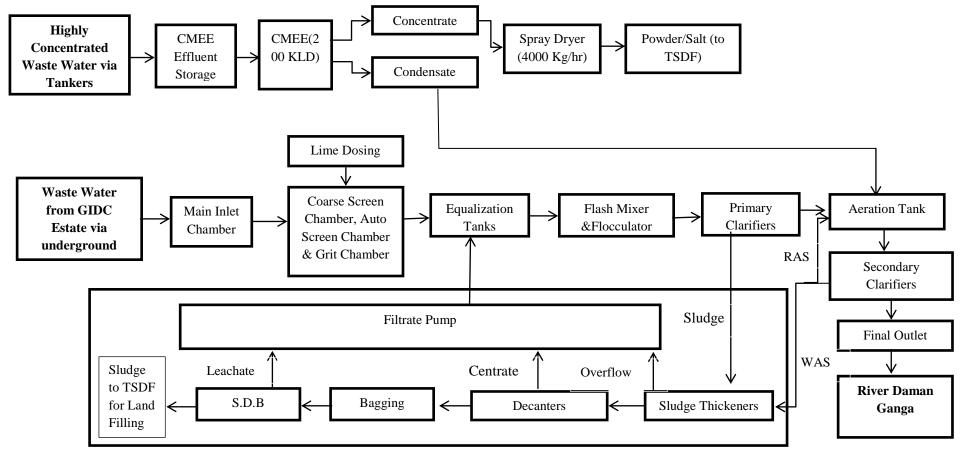


Figure-2: Flow diagram of CETP

The details of various units/equipment used in operations and processes of CETP are depicted in the below **Table-2**.

S.	Nameof theunit	Nos.	Dimensions, m-	Area,	Volume,m ³	
no.			each	m ²		
1.	Inlet Chamber	1	3x3x2.75	9	24.75	
2.	Screen Chamber	1		9	18.00	
	(Course)		3x3x2			
3.	SyloforLimeDosing	1			12MT	
4.	ScreenChamber(Fine)	1	3x3x2	9	18.00	
5.	AutoScreen	3	3 40MLDeach			
6.	GritChambers	2	7x7x1.5 49		73.50	
7.	EqualizationTanks					
8.	TankNo.1	1	78x19.5x3			
9.	TankNo.2	1	78x19.5x3	78x19.5x3 1521		
10.	TankNo.3	1	78x39x3	3042	9126	
11.	EqualizationTanks	3	75HP	3250m ³ /hr		
	Blowers					
		2	75HP	2425m ³ /hr		
		1	50HP	2425m ³ /hr		
12.	FlashMixer	2	3.5x3.5x3.5 m	12.25	85.74	
13.	Flocculator	4	10x7x3.5 m	70	980	
14.	Polytank	2	3.5x5x1	17.5	17	
15.	PolytankMixer	4	2HP			
16.	EqualizationPumping					
17.	Pumpsump	2	7.5x2.8x3.6	21	75.6	
18.	Pumphouse	1	15.5x7.5	116		
19.	Pumps	1	30HP	576m ³ /hr		
20.		2	75HP	1146m ³ /hr		
		2	100HP	2291m ³ /hr		
		2		2500 m ³ /hr		
21	Drincer resttling	2	150 HP	2500 m ² /nr		
21.	Primarysettling Withmech.Raker					
22		1	Dia 27my2	1075	2225	
22.	TankNo.1	1	Dia 37mx3	1075	3225	
23.	TankNo.2	1	Dia 37mx3	1075	3225	
24.	PrimarySludge	4		40 5		
25.	Pumpingstation	1	8.5x5.7x5.5	48.5		
26.	Sludgesump	1	4x4.5mx5	18	90	
27.	Sludgepump	1	7.5HP	30m ³ /hr		
		1	12.5HP	55 m ³ /hr		
28.	UASBFeedSump	1	7x7x2	49	98	

TABLE-2: DETAILS OF UNIT-WISE INSTALLED EQUIPMENT

29.	UASBFeedPump	1	50HP	500m ³ /hr	
		1	60HP	600m ³ /hr	
30.	AerationBattery (6channels)	2	85x17x3x(10) 85x17x3.5x(1)	17340(total)	54187 (total)
31.	Aerators	60	85x17x4.0x(1) 40x25HP 20x40HP		
32.	Secondarysettlingwith mech.Raker	2	Dia 44mx2.5	1520	3800
33.	Returnactivatedsludge (RAS) Pumping	1			
34.	Pumphouse	1	12.5mx6	122	
35.	Sludgestorage	1	(20.5-12.5)x6	208	1248
36.	Sludgepump	6	2x20HP	285m ³ /hr	
			2x40HP	570m ³ /hr	
			2x100HP	1150m ³ /hr	
37.	SludgeThicker	2		95	475
37. 38.	Thickenedsludge	dge		33	475
39.	Pumpingstation	1	4x6	24	
40.	Sludgesump	1	3x3x5	9	45
40.	Sidugesump	⊥	37373	5	45
41.	Thickenedsludgepumps	2	15HP	150m ³ /hr	
		2	12.5HP	100m ³ /hr	
42.	Centrifuge				
43.	DecanterHouse	2	11x 16		
44.	Decanter-1	1	Humboldt	30HP	20m ³ /hr
45.	Decanter-2,3,4,5,6	5	Humboldt	40HP	30m ³ /hr
46.	TreatedEffluent			L	-
47.	Dischargechamber	1	2x2	4	
48.	Dischargepipe	1	1.2mx500m		
49.	FiltratePumping		· · · ·		
50.	Tank	1	3.5x3.5x2	12	25
51.	Pumps	2	12.5HP	50m ³ /hr	
		1	20HP	100m3/hr	
52.	Filterfeedsump	1	7.87x7.0x 4.65	55.09	256.17
53.	Filterfeedpumps	1	30HP	576m ³ /hr	
		1	50HP	800m ³ /hr	
54.	CACCOfeedsump ^{\$}		12.5x9.7x3.3	121.25	400.13
55.	CACCOfeedpumps ^{\$}	2	25HP	325m ³ /hr	
		1	50HP	800m ³ /hr	
56.	CACCOreactorsA ^{\$}	3	17.0mx4.7m	226.98	1066.8
57.	CACCOreactorsB ^{\$}	3	16.5mx4.2m	213.83	898.07
58.	CACCOreactorsC ^{\$}	3	15.5mx3.7m	188.69	698.16
50. 59.	UASBreactors [#]	2	Dia 37.0mx7.65 m	1075.21	8225.38

60.	GasHolder [#]	1	2.2mx4.35	4	15
61.	Reactivatedclarifier	1	Dia 32m x4.5m	804.25	3619.21
62. InterimSludgeStorage		2	Cell-1: 35x30m	1050M ²	
			Cell-2: 60x30m	1800M ²	
63.	Boiler with ESP	1		8 TPH	
64.	CMEE (Common Multi effect Evaporator)	1	Four Effect	200 KLD	
65.	Coal fired Boiler	1	Fluidized Bed	8 TPH	
66.	New Sludge Drying Beds	3	155 x9x3 m	1395 M ²	4185 M ³
67.	Spray Dryer	1		4000 Kg/hr	
68.	Sun Drying Platform	1	155 m x 58 m	9000 m ²	

(Note: #-UASB- ideal/ not working & \$-CAACO treatment units – use for storage of CMEE feed)

2.2 DISPOSAL OF TREATED EFFLUENT

The treated effluent of CETP is discharged into River Damanganga. This location is about 13 km up stream of mouth of river into the Arabian Sea. As per NIO map, high tide line (HTL) reaches up to the railway bridge near this location. The aerial view of CETP, location of common MEE and treated effluent discharge point in River Damanganga are depicted in the below **Figure 3**.

Figure 3: Location map of CETP at Vapi and discharge of CETP in to river Damanganga

2.3 MAJOR UP-GRADATION DONE AT CETP, VAPI

Over the years M/s VGEL has upgraded various unit operations & processes in the CETP for improving the performance with technical guidance/studies of NEERI, GIZ, IIT Mumbai, IIT Kanpur etc. The details of major up-gradation done over the years are summarized chronologically in the **Table-3** below:

Month & Year	Unit added
Jan 1997	CETP taken over from GIDC
April 2000	Two Equalization tanks of 4500 each of CUM capacity .
June 2000	Decanters & Decanter house
August 2003	3 x 500 KVA D G Sets
Feb 2004	Two new aeration channels which enhanced 10, 000 m ³ volume of aeration
	system
April 2005	Pilot plant of UASB & CACCO
April 2008	Online TOC meter
April 2009	CACCO system
April 2009	UASB : 1 commissioned
April 2009	Micro bio & R&D Lab
June 2009	Auto Screen
Jul 2009	Equalization tank air blowers
Sep 2009	Flash mixer & Floculator
Sep 2009	Online lime dosing system
Jan 2010	FACCO System
Feb 2010	Reactivator clarifier (RAC)
March 2010	Online DO measurement
March 2010	UASB :II reactor
Mar 2010	20 x 40 HP surface Aerators
August 2010	Electro chemical oxidation system $x - H_2O$
Feb -2011	Humboldt Decanter
Aug 2012	Filter Press
August 2012	Interim Sludge Storage Facility 1 and 2
December 2012	Online TOC meter
April 2013	2 Humboldt Decanter
Dec 2013	Sludge conveying system screw pump & line installation
Dec 2013	Mixer in equalization tank no -3 (2 No's)
April 2014	Installation of SC-3 (RAC conversion)
May 2014	MEE project
July 2014	On line pH meter with data analogue in GIDC pumping station
Aug 2014	Filtrate augmentation
May 2016	Equalization tank No 1& 2 cleaning
March 2018	Spray dryer 94 KLD
June 2018	Salt Storage area
Oct 2018	Sun drying plat form

TABLE-3 MAJOR UP-GRADATION DONE OVER THE YEARS

2.4 UPGRADATION/CAPACITY ENHANCEMENT OF PLAN OF CETP:

- It is informed that the M/s VGEL has proposed to enhance the hydraulic capacity of existing CETP and also spray dryer system. M/s VGEL is going for expansion of CETP in two phases. In phase-I 55 MLD to 70 MLD immediate for which CTE is obtained and awaiting for EC.For Phase-II, 70 MLD to 100 MLD within one year.
- For Phase-I expansion i.e. 55 MLD to 70 MLD, two existing UASB reactors of 7.5 MLD each which are currently not in operation, will be converted to aeration tanks.
- M/s VGEL has also proposed Acid Bank with capacity 300 MTD which will take care of spent acids generated in the GIDC estate so that spent acids with high COD, TDS shall not come to CETP. It also helps in recycling and reuse for other purposes.

The details of various up-gradation/capacity enhancement activities are depicted in the below **Table-4** along with the estimated cost and target time for commissioning.

S. No	Name of project	Cost in Cr	Time of execution, Months
01	55 to 70 MLD	6.50	06
02	Disposal pipe line extension 3.5 Km	41.00	12
03	Deep Sea Discharge for 100 MLD	200.00	24
05	70 to 100 MLD	150.00	36
07	Spray dryer 8 TPH evaporation rate	10.00	06
08	Acid Bank 300 MTD	21.00	24
	Total	442.80	

TABLE -4 LIST OF UP-GRADATION OF VARIOUS PROJECTS

• In addition, VGEL prepared the Action Plan (Table 5) for improving their performance and meet the discharge norms.

TABLE 5: ACTION PLAN FROM VGEL TO IMPROVE PERFORMANCE OF CETP

S. No	Actions Point	Details	Remarks
INO			
1	To re-activation of Captive MEE at member units.	The Member Industries having MEE at their premises and sending waste water to CMEE has been instructed to run their own facility and treat their highly concentrated waste water in their own in-house Captive MEE facility. VGEL had already sent a request letter to GPCB to issue directions to the Concerned Industry Member units in this regard.	This will help to reduce the hydraulic load on Common MEE operating at CETP – Vapi.
2	Divert Concentrate (MEE-Bottom) of Captive MEE units for treatment in CSD at CETP.	Captive MEE members who are not having ATFD/SD for the treatment of their MEE concentrate will be instructed to send their Concentrate to CSD facility at CETP- Vapi, through dedicated Tankers fitted with GPS and Manifest Systems. GPCB may be requested to issue Notice of Directions in this regard to Captive MEE Units.	This will provide proper treatment of concentrate streams and reduce the High Levels of Refractory COD chance of mixing with inlet waste water hence to meet Inlet Norms at CETP.
3	Identification of Color imparting Industries.	To reduce color in CETP inlet effluent VGEL has started analyzing color in monitoring samples. VGEL has identified Industries and shall help them out to treat the same at source.	Reduction of color by member industries at source will reduce color at CETP inlet and at outlet.
4	Control Room Concept for Monitoring to be Established at CETP.	On-line Monitoring of PS-3 and PS-6 are also monitored from this Control Room and necessary checking information are passed on to Day and Night Vigilance Monitoring Team at the various Industry sub sectors for better control of effluent quality on 24 x 7 basis. It will be strengthened by Data Base Management Software, which will provide round the clock information for effective monitoring and control.	Effective Control on Monitoring activity will enhance the efficiency of Monitoring activities which will help in reduction of inlet load to CETP.

5	Installation of one 8000 Kg/Hr capacity Common Spray Dryer (CSD) for high TDS waste water.	Presently, CSD is in operation.	More Concentrated waste water can be treated from Small scale industries which will reduce refractory COD in CETP inlet and outlet.
6	Technical Assistance to Member Industries.	VGEL has started providing technical help to its member industries to carryout treatability studies and providing suitable technology for treatment of waste water at their plant itself (primary treatment). Various lab scale trials at CETP are being	Implementation of Industry specific primary waste water treatment like chlorination/sodium hypochlorite dosing, lime dosing and press filter, etc. will help to improve CETP inlet quality.
		done with waste water from member industries and treatability study outcomes are shared with problematic member units.	Proper operation of Primary ETP by Member industries will reduce shock/over loading to CETP.
7	Segregation of non- biodegradable waste water having high Refractory COD from member industries.	Non-Biodegradable waste water from Pesticide/Pharma/Dyes and Intermediates will be separated and taking them to CETP by dedicated tankers for physicochemical treatment through	This system will help CETP to reduce refractory COD at Inlet of CETP which will help CETP to meet COD norm at outlet.
		Electro oxidation/chemical oxidation followed by treatment at CMEE/CSD.	Those waste will be treated under CMEE or Spray Dryer instead of allowing discharge in CETP.
8	Proper Operation of GIDC Pumping Stations.	To provide all the pumping stations with Automatic level indicators and Automatic system to switch on DG set in case of power failure.	This will ensure smooth functioning of Pumping stations, hence reduce shock loads at CETP.
9	Bio-assay test facility to be provided at CETP	More appropriate state of the art Bio- assay testing facility will be provided at CETP to measure Toxicity of waste water on regular basis.	Bio-assay testing facility at CETP will help to review the status, analyze toxicants if any and remedy thereupon.
10.	Over ground pipe lines to carry the waste water from Member Industries to CETP.	Industries and GIDC shall have to install over ground pipeline with SCADA system and continuous auto sampler, collection wells shall be installed in consultation with VGEL and GPCB.	GIDC will implement this scheme in co-ordination with VGEL and VGEL will pay the cost of installation of such a facility implemented by GIDC.
		Notice will be issued by GIDC to the effect that large and medium Industries should install lines within one month and Small Industries should do within 3 months.	If ghost lines are found, VGEL will take steps to cancel the membership of that member industry and inform GPCB for permanent closure in order to control unauthorized inlet discharges.

			Size of the pipeline shall be decided by GIDC as per quantity of effluent discharged.
11.	Compulsory Sampling of Member Industries.	Compulsory sampling of discharge of all member industries of VGEL shall be carried out and tested at least FOUR times a year. Sampling will be done on basis of random allotment and pickup by computer based systems.	A monitoring supervising and advisory committee consisting of two Technical Directors of VGEL Board has been constituted and CEO-VGEL wills co-ordinate with the above committee for the effective monitoring of member industries.
13.	Appointment Technical Expert from National Level Reputed Institutes like IITs for Evaluation of VGEL's Effectiveness and Performance.	To Review the overall Operational effectiveness of VGEL's Systems by a third party Expert of National Repute and to suggest any improvements required to meet the Country's Environmental Laws.	Review of VGEL's Operational Systems' Effectiveness by a Technical Expert from National Level reputed Institutes like IITs will help to critically audit the VGEL systems and suggest any additional measures to enhance the performance of VGEL to maintain the state of the art systems in VGEL.

3.0 MONITORING OF CETP, VAPI

3.1 RECENT JOINT MONITORING:

Stage wise grab sampling was carried out on 12.02.2019 at CETP, Vapi during the visit of the committee constituted as per order dated 11.01.2019 in OA No. 95 of 2018. The samples were analyzed at laboratory of GPCB, Vapi.

The sampling was carried out following locations:

- Inlet to CETP (Out of equalization Tank)
- Outlet of primary clarifier no. 1
- Outlet of primary clarifier no. 2
- Outlet of secondary clarifier no. 1
- Outlet of secondary clarifier no. 2
- Final outlet of CETP

The analysis results are given in **Table-6**:

Sampling location(s)	Parameter(s)								
	рН	TSS	FDS	BOD	COD	NH ₃ -N	Phenols	CL	SO4
Inlet Norms	6.5-8.5	300	2100	400	1000	50	1	600	1000
Inlet to CETP (outlet of eqt tank)	8.02	188	4714	288	1184	55	2.37	2009	1440
Outlet of primary clarifier no. 1	7.24	118	5010	213	939	53	1.84	3178	1275
Outlet of primary clarifier no. 2	7.28	92	4612	191	907	51	1.56	2439	1127
Outlet of secondary clarifier no. 1	7.41	50	4596	34	284	48	0.88	2329	1107
Outlet of secondary clarifier no. 2	7.38	32	4808	31	255	42	1.07	2309	1093
Final outlet of CETP	7.21	34	4852	28	258	43	0.839	1984	1535
GPCB prescribed Norms (Outlet)	6.5-8.5	100	2100	30	250	50	1	600	1000

TABLE-6: ANALYSIS RESULTS OF MONITORING CARRIED-OUT DURING COMMITTEE VISIT IN FEB 2019

Note

Concentration of all the parameters are expressed in mg/L, except pH : :

Mode of sampling – Grab

3.2 **PREVIOUS MONITORING:**

CPCB regularly carry out quarterly monitoring CETP Vapi since last many years. GPCB also carry out regular sampling of CETP Vapi. The results of previous monitoring carried out by CPCB, RD, Vadodara is given in Annexure-2 and GPCB, RO, Vapi is given at Annexure-3.

4.0 **OBSERVATIONS:**

- It is observed from recent monitoring carried out on 12.02.2019 that CETP is not meeting with inlet norms as well as outlet norms for COD, FDS, Chloride & Sulphate. COD (258 mg/l) slightly exceeds the Outlet norm (250 mg/l). The other parameters such as pH, TSS, BOD, NH_3-N , phenols are meeting the outlet norms whereas NH_3-N , Phenols are not meeting with Inlet norms. In the recent monitoring, there is reduction of 82 % TSS, 90 % BOD & 78 % COD reduction due to treatment in CETP. If there is reduction in inlet quality of the CETP by achieving their CCA (outlet) norms of each member industry, there are fair chances that CETP achieves outlet norms.
- It is observed from the above analysis and the data provided in Annexure-2 & Annesure-3 that though there is improvement over the year in the treatment at CETP and treated effluent quality, still CETP is not able to meet outlet norms broadly for COD, FDS, Chloride

Sulphate and Color. Inlet quality is not meeting with inlet norms of CETP which shows that some members industries are discharging without meeting specified inlet norms as mentioned in the consents of member industries issued by GPCB. However, it is observed that there is improvement in inlet effluent quality over the years.

- The member industries are discharging their effluent in GIDC underground drainage system which leads to CETP. M/s VGEL –CETP needs to ensure that all the member industries discharge the trade effluent meeting the inlet norms of CETP. In case of non-compliance, the list of such industrial units needs to be provided to GPCB from time to time for necessary action against such units.
- The improving trend of treated effluent quality may be attributed due to source reduction, best management practices adopted by individual member industries of CETP, vigilance and enforcement of GPCB. The various up-gradations done in operation of different units of CETP, identification and segregation of high COD and TDS effluent streams from member industries and treatment through common MEE is encouraging. The various matters through Applications in Hon'ble NGT improved the situations over the years. Particularly improvement in the year 2016 and sometimes observed to be meeting with the COD norms in the Outlet which attributed towards the efforts taken up by GPCB and M/s VGEL due to Original Application No 89 of 2014 (Tarun Patel VS Gujarat Pollution Control Board &Ors) & 109 of 2014 (Tarun Patel VS The Collector, Valsad & Ors.) in National Green Tribunal (NGT) (WZ), Pune. However, Vapi CETP is required to improve and strictly maintain the inlet quality, operate properly and upgrade adequately so as to meet the norms continuously.
- As per order of Hon'ble NGT (WZ), Pune in O.A. No. 109 of 2014, CETP has planned for disposal pipeline up to 3.5 km from present location in the river towards the Arabian Sea. The matter was between Tarun Patel Vs Collector, Valsad &Ors related to pipeline for disposal of CETP effluent into deep sea (marine outfall). The Application is disposed on 27.10.2017 with direction to VGEL to extend the discharge point through the pipeline and a diffuser system as earlier suggested by NIO to the location at 20⁰21'45.290N, 72⁰ 52' 51.98" E approximately 4.5 km downstream from existing discharge location of CETP, Vapi in the Damanganga estuary within a period of 18 months at their own cost. Though, the matter was for marine outfall, instead of deep sea pipeline, the said order was given for pipeline up

to 4.5 km from present discharge location in consideration of amicable resolution in meeting between Applicant, GPCB, NIO, VGEL (CETP) and representative of villagers in view of difficulties in implementing the deep sea pipeline project due to resistance from locals faced by collector Daman (Daman Administration).

It is learned that National Institute of Oceanography (NIO) further studied the locations and it is stated in the report in November 2018 that now revised the discharge location with pipeline up to 3.5 downstream instead of 4.5 km from present location. However, as per report-"PIPELINE ROUTE SURVEY AND DIFFUSER DESIGN FOR DISCHARGE OF TREATED INDUSTRIAL EFFLUENTS GENERATED BY CETP, VAPI"- "the proposed location is on temporary basis as there is no enough dilution for disposal of effluent in the estuarine waterbody, and hence the pipeline should be extended to offshore location in future. The pipeline should be laid along river bank and very close to water column and it should be buried wherever it is possible. Since very low dilutions are available at this proposed location, increase in outfall quantity of more than 55 MLD is not advisable at this location. Hence the release of 100 MLD as proposed by VGEL for future expansion is not recommended at this location."

Collector, Daman approached Hon'ble NGT, PB, New Delhi though Review Application No. 21 of 2018 for review of the order dated 27.10.2017 and delay in condonation, However, Hon'ble NGT dismissed the said RA and related Misc Applications. Further, Daman collector approached Hon'ble Supreme Court with Civil Appeal Dairy No (s) 9808/2019 (arising out of impugned final judgement and order dated 14.12.2018 in RA No. 21 of 2018 and 27.10.2017 in OA No. 109 of 2014 passed by the National Green Tribunal, Western Zone, Pune).

Hon'ble Supreme Court in its order dated 15.04.2019 stayed the operation of the directions contained in the order dated 27.10.2017 of the Hon'ble NGT, Pune in OA No. 109 of 2017 (WZ) and the order dated 14.12.2018 in RA No. 21 of 2018.

 There was huge stock of sludge (13000 MT) and salt (2050 MT) from common spray dryer stored on in the premises.

15

5.0 **RECOMMENDATIONS:**

- CETP should up-grade/provide treatment units for meeting with outlet norms.
- CETP should start implementation of Action Plan (**Table:5** in Section 2.4) to meet with inlet as well as outlet norms.
- CETP should regularly send the sludge and salt (generated from Common Spray Dryer) to CHWTSDF for proper disposal.
- List of defaulting industries should be regularly (monthly) share with GPCB for taking action against these industries.

7.016 - 2

(Jaimin Rana) AEE, GPCB, RO, Vapi

Gajjar) RO, GPCB, Vapi

(Pratik Bharne) Sc E, CPCB, Vadodara

Annexure-1

PHOTOGRAPHS

Photo-1 CETP Vapi- Grit Chamber & Equalization Tanks

Photo-2 Primary Clarifier

Photo-3 Secondary Clarifier

Photo-4 Sludge dewatering (centrifuge)

Photo-5 Sludge and salt storage area

Photo-6 Spray dryer (for concentrate from Common MEE)

Photo-7 Treated effluent discharge chamber before discharge point

Photo-8 Treated effluent discharge in to the river

Photo-9 Treated effluent discharge in to the river

ANALYSIS RESULTS OF SAMPLING CARRIED OUT AT CETP VAPI BY CPCB, RD, VADODARA OVER THE YEAR

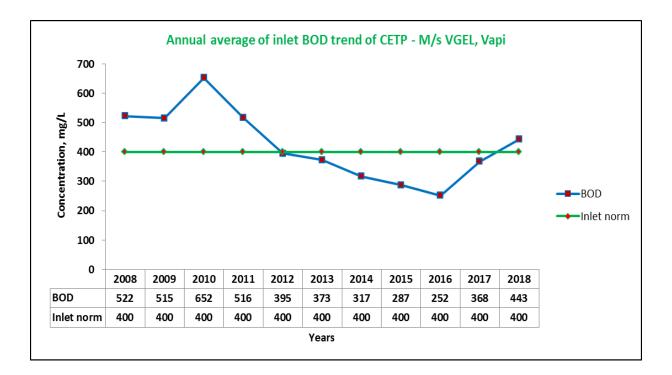
ANNUAL AVERAGE CONCENTRATION OF VARIOUS INLET & OUTLET PARAMETERS (Calendar year 2008-2012)

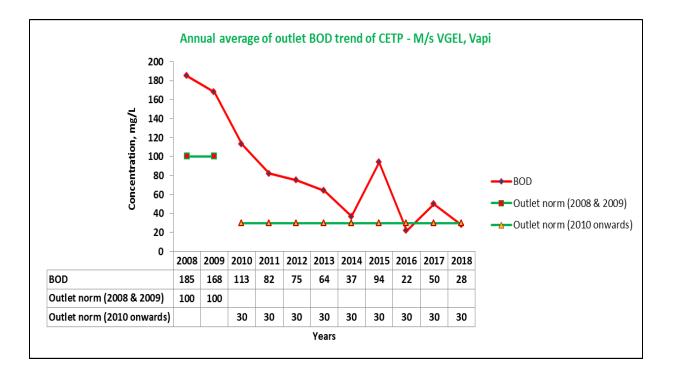
Sampling location(s) &	Parameters									
Year(s)	рН	TSS	TDS	BOD	COD	0 & G	NH₃-N	Phenols	S ⁻²	CN ⁻
Inlet-2008	6.04- 7.53	358	6716	522.2	1904.4	34.2	194.4			
Outlet-2008	6.32- 7.66	290.5	6957.4	185.4	886.5	21.02	184.2			
Inlet-2009	6.58-7.6	782	7555.8	515.8	2427	35.6	87.2			
Outlet-2009	6.9-7.56	342.8	7539.8	168.5	759	19.5	83.8			
Inlet-2010	6.57- 7.01	1440.5	7591	652.5	2055	58	60.5	3.055	2.24	0.13
Outlet-2010	6.99- 7.50	221.8	7870.4	113	631	21.8	59	1.6	1.56	0.18
		-	-	-		-	-		-	-
Inlet-2011	6.83- 7.54	681.5	8987.3	516	1771.8	22.6	48.9	2.8	3.4	0.85
Outlet-2011	7.25- 7.52	127.8	7620.8	82	508.3	11.9	49.7	0.9	2.5	0.3
	T	T			-	-		-	T	
Inlet-2012	6.55- 7.81	311.8	6674	395.3	1359.5	30.7	51.6	2.16	1.84	0.85
Outlet-2012	6.56- 7.43	136.5	6775.3	75.8	450	15.5	32.4	1.25	1.7	0.33

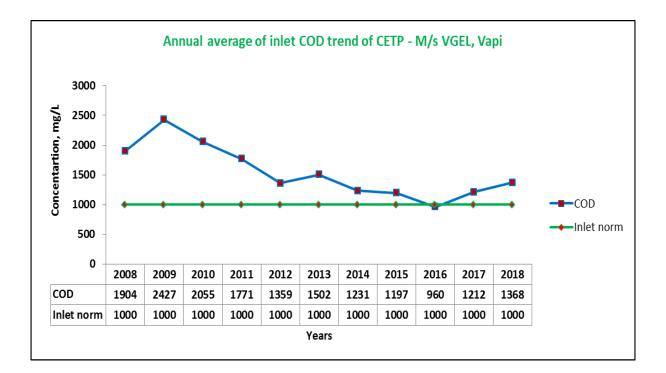
Note : Concentration of all the parameters are expressed in mg/L, except pH

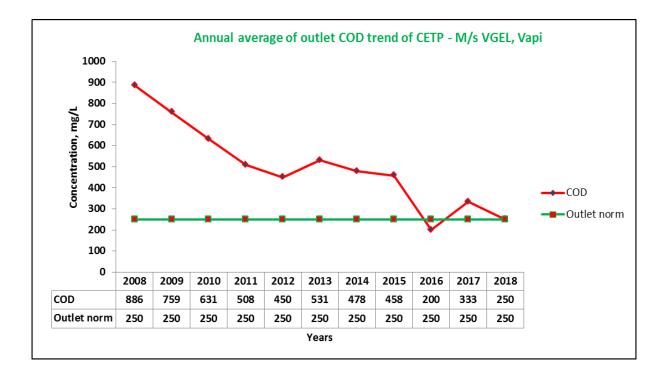
: Mode of sampling – Grab

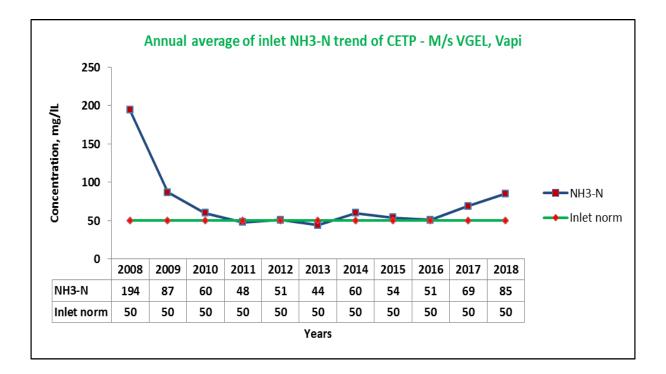
: Annual average of four quarterly values

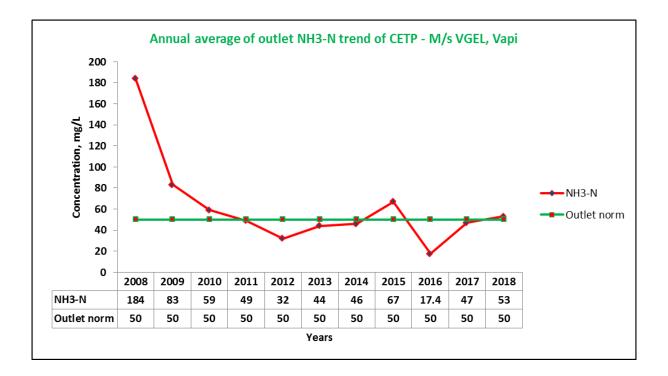

Sampling location(s) &		Parameters								
Year(s)	рН	TSS	TDS	BOD	COD	0 & G	NH ₃ - N	Phenols	S ⁻²	CN
Inlet-2013	6.97-7.9	783.3	7811.3	373.3	1502		44.4	3.3		
Outlet-2013	7.3-7.85	204	8120.8	64	531.8	20	44.4	1.9	5.1	0.66
Inlet-2014	6.67-7.86	423	9084	309	1339.5		51.6	2.47		
Outlet-2014	6.72-7.17	132	9117	37	474.5	2.92	48.3	0.66	1.38	0.45
Inlet-2015	7.34-7.73	564.2	7772.6	289.6	1197.4	4.5	54.3	4.7	26.4	0.32
Outlet-2015	6.73-7.68	143.6	7808.4	97	458.8	8.3	56.9	0.86	1.13	0.40
Inlet-2016	6.83-8.4	376.4	6545.4	252.6	960.4		51	2.6		
Outlet-2016	6.82-7.03	140.6	8400.6	22	200.2	4.2	17.4	0.3	0.8	0.1
Inlet-2017	6.51-8.29	249.75	7144.5	368.5	1212		69			
Outlet-2017	6.47-7.56	72.75	7673	50	333.75	3.75	47.06	3.39	0.288	0.089
Inlet-2018	7.69-8.1	270	8081	443	1368	8.35	85	5.18	4.38	0.12
Outlet-2018	7.15-7.64	57.25	7277	28	250	2.46	53	1.14	.68	0.11


Annual average concentration of various inlet & outlet parameters (Calendar year 2013-2018)


Note : Concentration of all the parameters are expressed in mg/L, except pH


: Mode of sampling – Grab


: Annual average of four quarterly values



Annexure-3,

ANALYSIS RESULTS OF MONITORING CARRIED AT CETP VAPI BY GPCB, RO, VAPI (2013-2018)

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	1000 mg/l	400 mg/l	300 mg/l
January	7.74	62	2359	543	1020
February	7.43	27.44	1773	543	532
March	7.5	27.44	612	180	214
April	7.078	43.792	1616.8	529.6	540
May	7.685	64.4	1269	329.5	432
June	7.22	11.76	677	216	606
July					
August	7.62	24.92	685.67		501.7
September	7.313	34.185	975.75	293.5	412
October	7.851	41.44	1315	454	502
November	7.67	82.848	1108.2	421	674.2
December	7.453	60.312	983.5	264.67	519.2
Outlet of CETP					
Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	250 mg/l	30 mg/l	100 mg/l
January	7.29	28.28	619.5	177	193
February	7.44	50.4	606	178	170
March	7.46	51.52	373	91	222
A 1	7.64	54.40	110	100	4.6.6

Inlet of CETPYear - 2013

7.61 51.19 108 April 410 166 May 7.68 64.4 1269 329.5 432 7.4 22.4 432.66 124 165.33 June 21.84 207 July 6.87 76 168 6.90 23.33 389.5 ---190.33 August 40.89 274.5 September 7.57 688.5 208.5 7.72 408 388 October 50.4 144 November 7.38 77.71 645.75 231.67 223 December 7.80 37.16 155.286 507.273 210.8

Inlet of CETPYear - 2014

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	1000 mg/l	400 mg/l	300 mg/l
January	7.68	40.4	1209	458	690
February	7.37	55.305	1551.3	281.5	1036
March	7.46	118.7	1627.5	319	521
April	7.821	70.28	1028.5	256	797.5
May	7.91	38.36	582	148.5	322
June	8.095	25.5	913.5	255.5	540
July	7.49	28.6114	587.57	140.285	312.3
August	7.73	37.49	1431.7	297	580
September	7.56	44.115	1323.5	314.67	366.5
October	7.41	35.62	1181	320	405
November	7.96	66.105	895	182	332
December	7.55	50.41	1125.6	280.75	399.4
Avg.	7.66	50.90	1121.34	271.10	525.14

Outlet of CETP

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	250 mg/l	30 mg/l	100 mg/l
January	7.60	29.96	387.5	133	114
February	7.45	53.05	592.25	177	145.5
March	7.73	54.32	705	205	145
April	7.02	45.17	477.33	171	312
May	7.42	13.42	610	137	152
June	7.75	49.69	441	115	188
July	7.30	15.44	391.44	81.44	158.22
August	7.29	24.05	554.75	104.75	211
September	7.43	25.23	599.2	145.66	216
October	7.23	35.24	1227.5	388	198
November	7.55	33.63	382	72	117
December	7.33	38.168	457.57	92	129.71
Avg.	7.42	34.78	568.79	151.82	173.86

Inlet of CETP- Year - 2015

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	1000 mg/l	400 mg/l	300 mg/l
January	7.74	43.70	967.22	146.43	299.78
February	7.53	57.02	1146.71	246.00	267.71
March	7.75	33.76	849.25	190.3	408.3
April	7.49	46.20	935.11	225.50	378.44
May	7.77	54.28	982.43	176.75	363.71
June	7.76	23.93	1179.00	271.00	554.00
July	7.67	32.86	906.00	235.30	229.60
August	7.72	74.45	1128.40	277.20	728.40
September	7.61	46.11	1008.67	307.67	739.33
October	7.87	80.18	1101.00	253.00	386.00
November	7.68	50.03	1125.40	338.40	219.20
December	7.66	64.61	1080.86	231	211.71
Avg.	7.69	50.59	1034.17	244.72	398.85
Outlet of CETF	2– Year 2015				
Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	250 mg/l	30 mg/l	100 mg/l
January	7.59	40.63	383.9	61.38	143.20
February	7.42	36.27	348.25	56.88	140.00
March	7.43	41.39	478.00	47.00	159.00
April	7.57	29.42	390.56	53.83	178.67
May	7.41	30.703	418.75	51.40	114.75
June	7.54	17.802	326.60	34.00	171.20
July	7.43	27.68	454.18	64.64	118.36
August	7.46	28.39	382.33	57.00	108.67
September	7.31	29.40	334.25	44.25	98.50
October	7.36	37.99	370.22	36.56	73.11
November	7.55	42.79	532.29	75.00	126.00
December	7.43	43.95	497.00	39.00	174.00
Avg.	7.46	33.87	409.69	61.37	131.18

Inlet of CETPYear - 2016

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	1000 mg/l	400 mg/l	300 mg/l
January	7.63	49.46	1115.05	370.07	323.12
February	7.84	43.66	835.33	287.37	313.27
March	7.55	27.12	868.20	205.50	139.10
April	8.03	51.87	866.30	193.40	113.20
May	7.96	72.08	1031.30	254.20	201.40
June	7.95	62.37	947.80	219.00	250.80
July	7.73	49.53	635.70	147.70	192.50
August	7.68	21.92	574	149.5	135.67
September	7.65	42.12	863.67	208.89	295
October	7.93	43.56	793.33	196.9	187.5
November	7.82	67.21	1149.44	301.11	205.78
December	7.81	52.91	1033.6	299.8	200.4
Avg.	7.80	48.6	892.81	236.12	213.14

outlet of CETPYear 2016

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	250 mg/l	30 mg/l	100 mg/l
January	7.49	43.34	356.95	58.53	118
February	7.55	37.12	336.75	42.37	109.64
March	7.62	27.44	297.83	39.52	62.17
April	7.54	34.36	239.90	32.59	52.12
Мау	7.39	36.08	254.33	37.11	63.55
June	7.26	29.85	235.80	28.88	79.00
July	7.19	27.39	213.80	26.38	81.85
August	7.20	23.06	181.5	24.5	57
September	7.23	23.56	226.33	31	66.22
October	7.57	28.39	220.75	24.08	57
November	7.43	35.46	303.78	44	72.89
December	7.26	44.85	259.6	28	82.8
Avg.	7.39	32.57	260.61	34.75	75.19

Inlet of CETP Year - 2017

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	1000 mg/l	400 mg/l	300 mg/l
January	7.68	64.34	1445.75	367.62	290.5
February	7.74	84.25	1261.25	255	428.5
March	7.86	58.68	1026.12	225.67	413.67
April	7.97	57.57	1105.5	233.5	250.5
May	7.79	44.71	1041.5	226.17	248.33
June	7.87	36.97	760	155	114.67
July	7.43	33.76	771	172.28	150
August	7.40	58.24	907.17	239.17	106.3
September	8.04	50.21	1102	236.5	268
October	7.73	110.09	1404.7	286	157.3
November	7.82	87.21	1004.5	221.5	321
December	7.56	82.37	1496.3	219.67	270
Avg.	7.74	64.03	1110.48	236.50	251.56

Outlet of CETP Vapi Year-2017

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	250 mg/l	30 mg/l	100 mg/l
January	7.39	56.01	293.5	34.25	77.5
February	7.59	57.5	266.75	29.5	77
March	7.27	45.62	245.25	27.33	81
April	7.34	26.55	240.25	26	73.5
May	7.33	37.41	251.33	28.33	69.33
June	7.23	35.18	228.33	26	65.33
July	7.3	30.82	232	33.28	84.86
August	7.36	49.05	268	40.83	88
September	7.39	36.71	249.5	30.5	54
October	7.58	41.81	296.67	41.33	59.33
November	7.45	55.78	300.5	38	103
December	7.67	54.81	390.33	28.33	40.67
Avg.	7.40	43.93	271.86	31.97	72.79

Inlet of CETP ,Year - 2018

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	1000 mg/l	400 mg/l	300 mg/l
January	7.54	65.19	1181.33	290.33	283.50
February	7.75	55.15	910.00	202.50	178.00
March	7.95	106.86	1524.50	402.50	436.00
April	7.88	71.85	981.00	230.33	445.33
May	8.01	74.20	1068.50	268.75	239.00
June	7.66	76.75	808.67	196.00	287.67
July	7.45	75.04	833.00	232.50	246.00
August	8.41	89.25	1370.50	394.00	253.00
September	7.98	85.82	1489.50	400.00	917.50
October	7.38	105.45	1261.75	330.00	406.75
November	7.77	65.87	1080.67	279.00	335.33
December	8.02	59.28	1149.75	271.50	353.75
Avg.	7.81	77.55	1138.26	291.45	365.15

outlet of CETP Year 2018

Parameter	рН	NH3	COD	BOD	SS
Limit ->	6.5 TO 8.5	50 mg/l	250 mg/l	30 mg/l	100 mg/l
January	7.54	48.63	317.33	31.83	39.67
February	7.77	53.82	275.00	31.00	119.00
March	7.97	90.38	524.00	126.00	72.00
April	7.65	73.21	390.67	82.67	84.00
May	7.70	49.79	267.00	45.50	69.00
June	7.58	49.86	222.00	27.00	78.00
July	7.60	45.65	263.17	35.67	97.67
August	7.46	60.21	285.00	35.00	105.00
September	7.62	50.21	343.00	48.00	120.00
October	7.66	55.23	303.50	44.75	122.50
November	7.74	51.60	259.00	29.00	95.33
December	7.77	46.46	267.50	33.00	94.50
Avg.	7.67	56.25	309.76	47.45	91.38