Report of the Committee Constituted by Hon'ble National Green Tribunal, Principal Bench, New Delhi in the Case No. 667/2014 arising out of O.A. No. 102/2014, M/s. Sandplast India Pvt. Ltd., Vs. MoEF and Others

1 1 m

Submitted by the Committee

15th January, 2015

Am

1.0 Introduction

The issues raised in the M.A. No 667/2014 in the matter of Sandplast (India) Pvt. Ltd., Vrs Ministry of Environment, Forest & Climate Change (MoEFCC) and Others relates to Fly Ash Management in Thermal Power Plants. The attention has been drawn by the applicant for encouraging / maximizing utilization of fly ash in accordance with the existing Rules / Notification of MoEFCC.

2.0 Orders of Hon'ble Tribunal

- 2.1 The Hon'ble National Green Tribunal (NGT) vide its order dated10th November, 2014 in Application No. M.A.667/2014 arising out of O.A. No.102/2014 by Sandplast (India) Pvt. Ltd. Vrs MoEF & Others constituted a Team to oversee the fly ash management in Thermal Powers Plants of Angul and Talcher areas of Odisha. In this order, representative of CSIR-NEERI, Nagpur is a Member of the Committee alongwith representatives of MoEFCC, CPCB and SPCBs. Vide this order, the Committee has been directed to visit the sites of NTPC, NALCO and other Thermal power Plants located in Angul and Talcher area of Odisha and to collect samples of fly ash from the disposal sites, ground water from the areas around ash disposal sites and stack emissions and analyse the same. The Committee has been further directed to visit the mine areas, where the fly ash is being dumped by these industries. The analysis report along with the opinion regarding adverse impact on environment and human health etc. is to be placed before the Hon'ble Tribunal.
- 2.2 In another order dated 24th December, 2014, the Hon'ble Tribunal again directed the MoEF, CPCB and a representatives from Indian Bureau of Mines (IBM) to carry out a study in the mine areas of Jagannath, OCP and Talcher and submit analysis report to know

whether there is any contamination in the ground water as a result of dumping of fly ash in these mine areas. It was further directed that the Committee shall suggest if the disposal is being done appropriately by these plants so as to avoid environmental degradation or damage.

2.3 The Hon'ble Tribunal in its order dated 07.01.2015 constituted a single committee for the above mentioned purpose. The Member Secretary, CPCB shall be the Chairman of the Committee.

3.0 Composition of the Committee

Accordingly, as directed by the Hon'ble Tribunal, the Committee represented by the following members:

- 1) Dr. A. B. Akolkar, Member Secretary, Central Pollution Control Board, New Delhi - Chairman
- 2) Ms. Sanchita Jindal, Director, MoEFCC, New Delhi Member
- 3) Shri Rajiv Kumar, Member Secretary, State Pollution Control Board, Odisha – Member
- 4) Dr. Paras Ranjan Pujari, Nominated Scientist, CSIR-NEERI, Nagpur Member
- 5) Shri Mantu Biswas, Regional Controller of Mines, Indian Bureau of Mines, Bhubaneswar – Member

4.0 Scope of study of Committee

The Committee has drawn its mandate from the above mentioned orders of Hon'ble Tribunal, which include -

- Visiting of ash disposal sites of thermal power plants in Angul-Talcher area.
- 2) Visiting of coal mine void where fly ash is being disposed.
- 3) Collection & analysis of ground water samples around the ash disposal sites and other areas.

- 4) Collection & analysis of stack emission samples.
- 5) Collection & analysis of ash samples from the disposal sites.
- 6) Observations on human health and environment.

5.0 Visit of the Committee

The members of the Committee visited the sites during 3rd to 6th December, 2014 and 12th to 15th January, 2015. The following ash disposal sites of Thermal Power Plants were visited –

- 1) NALCO, CPP, Angul
- 2) Talcher Thermal Power Station (NTPC), Talcher, Angul
- 3) Talcher Super Thermal Power Plant, NTPC, Kaniha, Angul
- 4) Nava Bharat Ventures Ltd., Dhenkanal
- 5) GMR Energy, Kamalanga, Dhenkanal
- 6) Bhushan Energy Ltd., Dhenkanal
- 7) South Balanda Coal Mine Void area, Talcher
- 8) Jagannath Coal Mine Void area, Talcher

The list of Officials of the Thermal Power Plants present during the field visit is enclosed at **Annexure-A**.

6.0 Methodology of Study

6.1 The Committee discussed the strategy to be followed for execution of the study. It was agreed to visit the areas in question. Since the collection and analysis of samples of Emissions, Ground Water and Ash requires considerable time and to have further view on the results, the Committee requested State Pollution Control Board, Odisha to collect the samples and analyze at their laboratory in advance. Accordingly, sampling and analysis was carried out by SPCB, Odisha during 24th to 27th November, 2014.

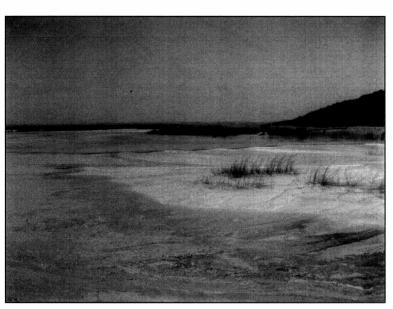
6.2 The Committee also referred the available documents, various studies and other references placed before it by various agencies.

7.0 Method of Sampling and Analysis

Ground Water samples were collected from 36 locations /sites and these were analysed for Physico-Chemical properties in the Laboratory of Odisha State Pollution Control Board. The analysis was carried out following the Standard Method of APHA (2005) which includes acid extraction and Inductive Coupled Plasma Mass Spectroscopy (ICPMS) for heavy metals.

Stack samples were collected from 6 Power Plants under Isokinetic conditions and analysed for Particulate Matter (PM).

Ash samples were collected from 12 sites. The composite samples were analysed by extractive method for metals contents.


8.0 Information About Industries

8.1 Captive Power Plant (CPP) of M/s NALCO Ltd., Angul

The power generation capacity of M/s NALCO, CPP is 1,200 MW (10x120 MW). The total ash generation from this plant was about 1.92 Million Tonne during the financial year 2013-14. At present, the Power Plant generates about 5,000 TPD of ash, out of which, about 3,800 TPD is being sent to the ash pond. Balance ash of about 1,200 TPD is supplied to fly ash brick manufacturers, asbestos products manufacturers and also used in dyke raising, quarry filling and low lying land development.

The fly & bottom ash of Unit-1 to Unit-6 are disposed off in lean slurry

mode in the existing ash ponds. Bottom ash of Unit-7 to Unit-10 is being collected in dry form and disposed off in lean slurry form. The fly ash from Unit-7 to Unit-10 is disposed off in the ash pond in High Concentration Slurry Disposal (HCSD) mode. The industry has constructed its ash pond in an area of 800

Lean Slurry Ash Disposal in Ash Pond, NALCO, CPP

Acre which is located at a distance of 6.5 km from the plant. It has 3 compartments which are as follows at present.

- a) Ash Pond-I -210 acre
- b) Ash Pond-II-211.5 acre
- c) Ash Pond-III-51.5 acre

The decanted water from ash ponds is taken to the treatment plant and reused for ash slurry making. For creating additional space for ash disposal a new ash pond-IV with HDPE lining has also been constructed near the existing Ash Pond in an area of 46 Acre. The location of all ash ponds is presented in **Figure-1**.

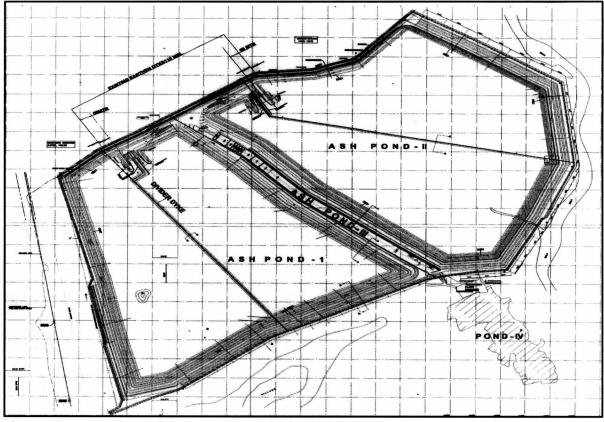


Figure 1 : Location of Ash Ponds of M/s NALCO Ltd., Angul

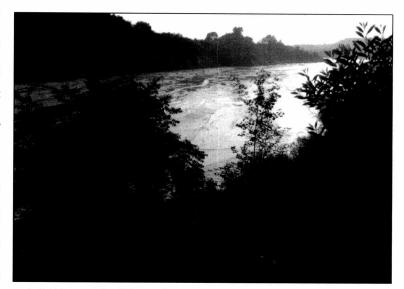
However, in future the CPP will be using fly ash for reclamation of coal mine void allotted to them at Bharatpur South Quarry of Mahanadi Coal Fields Limited (MCL). They have been granted Consent to Establish by SPCB, Odisha and permission from MoEF for one year as pilot project for this mode of disposal. It was gathered by the Committee that the Consent to Establish was given to them after extensive studies on Base Line, Micrometeorology, Hydrogeological Study & TCLP Studies through Central Mine Planning and Design Institute (CMPDI), Ranchi. Further, the Mine Void Core Drilling Study through Mineral Exploration Corporation Ltd. (MECL), Nagpur, Relative Porosity Study through Nuclear Dual Probe Method by MECL, True Porosity Study of the Core Material through University of Petroleum and Energy Studies (UPES), Dehradun, Permeability Study through UPES, Dehradun, Heavy Metal Study through BARC, Mumbai, Nucleoid study of ash pond thorough BARC have been carried out. As per the above studies carried out by the industry through various agencies, it was found that ash disposal in the ash pond is safe.

The thermal power plant also has reclaimed stone quarries at Parang

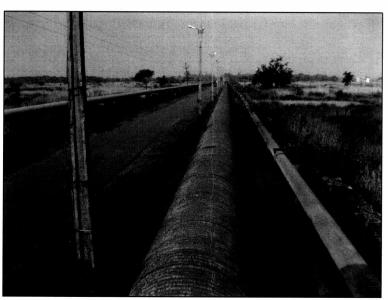
and Taltalia with fly ash of 1,38,000m³ and 1,65,000m³ respectively with the permission of SPCB, Odisha.

The lean slurry transportation system (pipeline) for mine void filling at Bharatpur South Quarry is in advanced stage of construction.

Pumping Station inside NALCO, CPP for Mine Void Filling


Pipeline of 15 km has already been laid down.

8.2 Talcher Thermal Power Station (TTPS), NTPC, Talcher, Angul


M/s Talcher Thermal Power Station (TTPS), NTPC, Talcher, Angul is the first Thermal power station in the State of Odisha established by Govt. of Odisha which was commissioned with its Unit-I on 17.12.1967. The thermal power plant (TPP) is having a total installed capacity of 460 MW (four units of 60 MW each in stage-I and two units of 110 MW each in stage-II). The plant was taken over by National Thermal Power Corporation (NTPC) on 30.06.1995.

The TPP consumed 3.12 Million Ton of coal during the year 2013-14 and generated 1.21 Million Ton of total ash. Hence, the power plant generates about 3,300 TPD of ash. About 20 TPD of dry ash is utilised for fly ash brick manufacturing and about 80 TPD is supplied to asbestos plants. The plant has 3 fly ash brick plants inside its premises and fly ash is supplied to 18 outside fly ash brick plants. Balance ash is used in mine void filling. The power plant has been allotted abandoned coal mine void of South Balanda coal mine of MCL. They have obtained Consent to Establish

from the State Pollution Control Board, Odisha. clearance from DGMS and permission (EC) from MoEF on pilot basis for one year for filling the void with ash. South Balanda has 3 voids in an area of 70.75 Ha and volume of the void is 14.73 Mm³. The void filling has started since 2005 and the estimated life of this void is 14 years. There are three ash slurry disposal pipelines (2 Working + 1 Standby) of about 9 kilometers length each for transportation of ash to mine void. The ash slurry discharged at mine void travels through gravity towards a lower level and ash particles settle down while travelling. The decanted water is partly

Ash Disposed off into the South Balanda Coal Mine Void in Lean Slurry Form, TTPS (NTPC), Talcher

Ash Slurry Pipelines uptoSouthBalanda Coal Mine Void and Return Raw Water Pipeline, TTPS(NTPC), Talcher

being circulated back to the plant and partly for irrigation, as per the demand of farmers. The industry has been analyzing the decanted water samples quarterly and the quality of water is within the permissible limit. The mine void at South Balanda is shown in the schematic map at **Figure - 2**.

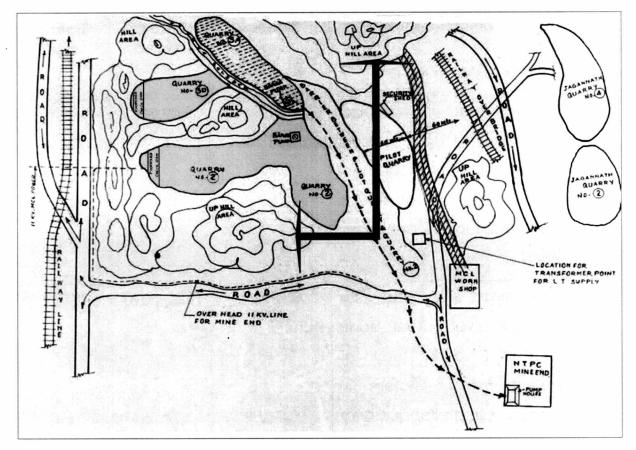


Figure-2 : Schematic Map of South Balanda Coal Mine Void for disposal of Fly Ash by TTPS.

The plant has carried out various environmental studies for mine void filling, which are given below in **Table-2**.

Table	2:	Studies	carried	out	by	TTPS	on	Impact	of	Mine	Backfilling	on
Enviro	nme	ent										

SI. No.	Name of the study	Agency	Date of Award	Status of study
1	Hydro-geological	CMPDI,	21.01.2003	Completed
	investigation of south Balanda mine area	Ranchi		
2	Ash Characterisation	CMPDI,	21.01.2003	Completed
	Environmental Baseline data	Ranchi		
	& Feasibility report for			

SI. No.	Name of the study	Agency	Date of Award	Status of study
	disposal of Ash in Mines			
3	Environmental Impact Assessment cum Environmental Management Plan for disposal of Ash in South Balanda Open Cast Mines	CMPDI, Ranchi	13.02.2003	Completed
4	Assessment of safety for proposed over burden earth fill barrier and study of existing ash fill system in quarry 2,3 and pilot quarry of South Balanda OCP	CMPDI, Ranchi	18.03.2010	Completed
5	Impact Assessment of ash fill sites of NTPC Ltd./Tacher Thermal on water resources in the surrounding area of South Balanda mine pit and old ash pond area.		27.12.2011	Completed
6	Report on Isotope hydrochemical investigation on the impact of fly ash disposal in open cast coal mine quarries to groundwater quality at Talcher, Odisha.	BARC, Mumbai	09.06.2012	Completed
7	Study of fly ash characterization such as its	CSIR-NEERI,	04.09.2012	Completed

SI. No.	Name of the study	Agency	Date of Award	Status of study
	Reactivity and Movement of Ash fill site of TTPS at South Balanda Area and leaching characteristics of mine pit water at SB Mine pit.	Nagpur		
8	Study of fly Ash of Talcher Thermal Power Station, NTPC and its leachability characteristics with reference to mine water and Brahmani river	CSIR-IMMT, Bhubaneswar	09.08.2012	Completed
9	Study of Effects due to ash fill sites of TTPS on Flora & Fauna in the surrounding area of South Balanda Mine pit and Jagannath mine pit.	CSIR-NEERI, Nagpur	25.08.2012	Completed
10	Testing of Fly Ash samples for Radiological & Tracer elements Analysis.	BARC, Mumbai	27.09.2013	Completed
11	Radiological survey around Talcher Thermal Power Station, NTPC, Odisha	BARC, Mumbai	08.09.2011	Completed
12	Impact Assessment of ash fill sites ash pond on Ground water quality surrounding area of South Balanda mine pit.	CSIR-NEERI, Nagpur	30.10.2013	Draft Report Submitted

SI. No.	Name of the study	Agency	Date of Award	Status of study
13	Hydrogeological	CMPDI,	27.11.2012	In progress
	Investigation in mine voids	Ranchi		
	quarry nos. 4,7 and 8 in			
	Jagannath area of MCL and			
	quarry Nos. 2,3A & 3B of			
	South balanda OCP of			
	Talcher for disposal of ash			

8.3 M/s Talcher Super Thermal Power Station (NTPC), Kaniha, Angul

The Talcher Super Thermal Power Station of NTPC at Kaniha is having 6X500 MW unit (2x500 MW in Stage-I & 4x500 MW in Stage-II). The power plant consumes about 17 million tonne of coal and the ash generation from the plant was about 6.31 million tonne during the year 2013-14. The average total ash generation is 20,000 TPD. About 200 TPD of fly ash is utilized for brick manufacturing (5 plants inside and 25 plants outside), about 80 TPD is supplied to asbestos units and 5,500 TPD of ash is used for dyke raising. Balance amount of ash is disposed off in the ash pond in lean slurry form through pipelines.

The ash pond of the industry is situated at Takua village. The detail of ash pond and slurry pipeline are summarized in **Table 3**.

Details	Stage # I	Stage # II
Total Area	750 Acres	850 Acres
Lagoon-1	230 Acres	144 Acres
Lagoon-2	280 Acres	109 Acres
Over Flow Lagoon (OFL) for recycling of over	45 Acres	56 Acres
flow water from ash pond		

Table 3 : Details of Ash Ponds, NTPC, Kaniha

Details	Stage # I	Stage # II
Others facilities	195 Acres	541 Acres
Design height of each raising	3.00 M	5.00 M
No. of raising designed for	Seven	Nine
Present stage of raising	6th	4 th
No. of pipelines	4	6
Distance from plant	10.8	13.2
Operating since	01.01.1997	01.08.2003
Ash deposited as on 4.12.2014 i.e. date of	322 lakh m ³	319 lakh m ³
inspection		

The ash pond of TSTPS, NTPC, Kaniha is shown in the schematic map in **Figure-3.**

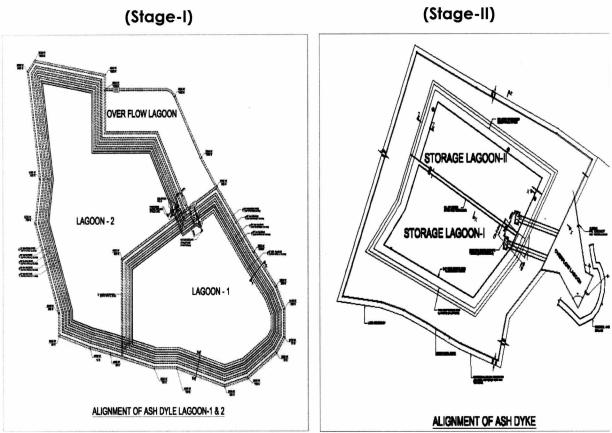
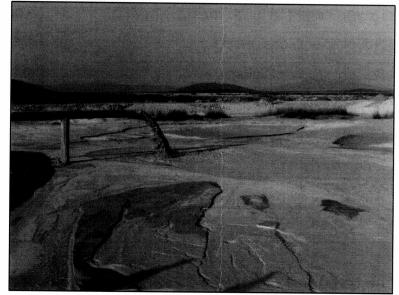
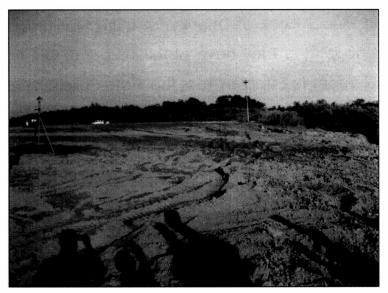



Figure -3 : Schematic Map showing the locations of ash ponds of TSTPS, NTPC, Kaniha.

In general, one lagoon is kept in service. Presently the Stage-I ash pond is in 6th raising and Stage-II ash pond is in 4th raising. The Lagoon-I of Stage-I

and Lagoon-II of Stage-II were found to be active during the visit. They have installed 2 pump houses consisting of 36 ash slurry pumps for 6 Units. It was observed that buttressing of Stage-I ash pond and periphery filling of Stage-II ash pond was going on. They have estimated to use 200 lakh m³ of ash for both the works.


Ash Disposal through Lean Slurry Mode in Ash Pond of TSTPS (NTPC), Kaniha

In addition to the above, the power plant has been allotted abandoned Quarry No.8 of Jagannath Coal mine of MCL having void capacity of 17.8 million m³. The plant has initiated several studies and is in the process of obtaining various clearances for mine void filling.

8.4 M/s Nava Bharat Ventures Ltd., Khadagprasad, Dhenkanal

The power generation capacity of M/s. Nava Bharat Ventures Ltd. is 158 MW (2x64 MW + 1x30 MW). The ash generation during the year 2013-14 was 2,00,871 Tonne, which was totally utilized for fly ash brick manufacturing and filling of coal mine void, abandoned stone quarry and low land area. However, presently the plant is producing only 30 MW, which is mostly for its Ferro Alloys Plant and ancillary units located inside their premises. Therefore, the present ash generation from the power plant is about 350 TPD only. The ash is collected in dry form pneumatically in the silos (2 silos of 75 Tonne capacity for 30 MW and 4 silos of 150 Tonne capacity for 2x64 MW). About 75 tonne of ash is being supplied to fly ash brick manufacturers, about 25 tonne is utilized for filling of the allotted coal mine void and balance about 250 tonne is utilized in filling of abandoned stone quarries. This is carried out with the permission from SPCB, Odisha. The power plant has been allotted an


abandoned coal mine void of South Balanda Coal Mine of MCL in Talcher area. The allotted area is 49.42 Acre and it has the capacity holding of approximately 34 lakh tonne of ash. The ash is transported in moist condition by covered trucks to the allotted mine void which is located at a

Dry Ash Disposal in Sounth Balanda Mine Void by Nava Bharat Ventures Ltd.

distance of about 40 km from the plant by road since the year 2007-08. The moistened ash is unloaded at mine void site and leveled by dozer. Six mobile

water sprinklers have been provided to suppress fugitive dust emission during handling of fly ash. After leveling, the area is reclaimed simultaneously by covering it with soil and plantation over it. They have so far filled 3,93,780 tonne of ash in this coal mine void since the year

Stabilization of Ash Disposal Site in South Balanda Mine Void with Plantation by Nava Bharat Ventures Ltd.

2008-09 upto November, 2014 and stabilized 5 acres of the void. It was informed by the representatives of the plant that the estimated life of this void is upto the year 2022.

The power plant has also been allotted four abandoned stone quarries in Hindol Block of Dhenkanal district for utilising ash for filling the void and stabilizing it. They have obtained permission from District Administration and Consent to Establish from the State Pollution Control Board, Odisha. The total area of the allotted stone quarries is 13.69 acres (Bramhanabasa-4.57 Acre, Baghalunda-0.82 Acre, Badalo-3.02 Acre and Rabibania-5.28 Acre). The distance of these stone quarries is about 18 KM from the plant. At present, they are disposing the ash at the Badalo site. They have so far disposed off 97,000 tonnes of ash at Badalo site from November, 2013 upto November, 2014.

In addition to the above, the plant has also disposed off fly ash on an area of 82.89 Acre at Nimidha, approximately 12 KM from the plant by road. The ash was disposed off at this site in dry form to make ash mound. Out of this area, the power plant has exhausted only 30 Acres however, now the site is no more being used for ash disposal since December, 2013. However, the industry has reclaimed the exhausted area by stabilizing the mound with grass turfing on the slopes and making plantation on the top of the mound.

8.5 M/s GMR Kamalanga Energy Ltd., Kamalanga, Dhenkanal

The power generation capacity of M/s GMR Kamalanga Energy Ltd. is 1050 MW (3x350 MW). Presently, the industry is operating 2 units and is generating about 470 MW of power. The industry is blending indigenous coal with 40% of imported coal having less ash content thus reducing the overall ash content of the coal. Presently they generate about 2,000 TPD of ash out of which about 350 TPD is supplied to 21 fly ash brick manufacturing units and balance fly ash is separately collected and pneumatically transferred to 4 silos of 1,000 Tonne capacity each. There are six hydro bins for slurry making of bottom ash. The ash pond of the plant is shown in the schematic map given in **Figure-4**.

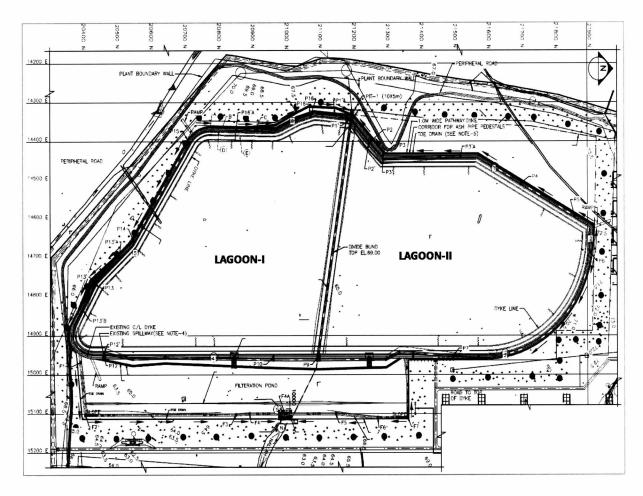
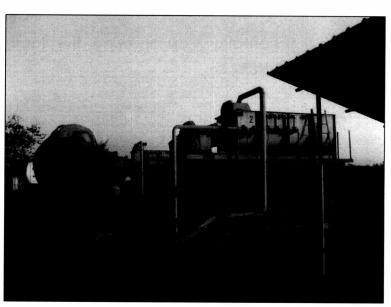


Figure-4 : Schematic Map showing the location of ash ponds of GMR Kamalanga Energy

Both fly and bottom ash is mixed with water in the slurry tank. The slurry is then pumped to ash pond located within the plant premises through High Concentration Slurry Disposal (HCSD) mode. The area of the ash pond is 185 Acres and is located

Disposal of ash in the Ash Pond by HCSD System by GMR Kamalanga Energy Ltd.


at a distance 250 mtrs from the ash handling system. It is divided into Lagoon-I (95 Acres) and Lagoon-II (90 Acres). Four pipelines (2 for each lagoon) have been laid down for carrying the ash slurry. HDPE Liner of 75 micron thickness has been provided at the bottom and sides of the Ash Pond. The overflow water from both the lagoons is collected in a common filtration pond of 38 Acres having geo-textile membrane on water face. The filtered water will be pumped for recycling from this pond.

8.6 M/s Bhushan Energy Ltd., Dhenkanal

The power generation capacity of M/s. Bhushan Energy Ltd. is 300 MW. The industry generated 5,86,784 tonne of ash during the year 2013-14. Earlier, the industry was disposing ash in dry form at Sibpur ash mound in an area of 22 Acres. The mound has been reclaimed by maintaining the slopes and undertaking plantations. A garland drain with catch pits have also been provided around the ash mound for collection of the surface-run off.

The plant is generating about 2,000 TPD of ash at present out of which about 100 TPD is used for brick manufacturing inside the plant premises.

Remaining fly ash is being disposed off in six abandoned stone quarries and the abandoned mine void (Quarry-4 of Jagannath OCP). The stone quarries have an area of 19.37 Acres and are at Karanda village which is about 12 km by road from the plant. About 400 TPD of ash is being disposed off

Ash brought in Bulkers, Pneumatically conveyed to Mixer and disposed to Quarry No.4 of Jagannath OCP, Bhushan Energy Ltd.

in these stone quarries. The ash is transported in covered vehicles in stone

quarries and through bulkers in mine void. Ash from the bulker is evacuated pneumatically on the site of mine void and is converted in to slurry in three mixers by adding water. The slurry is then released to the mine void by gravity. Water from the mine is used for slurry making. The distance of mine void is about 37 km by road. The area of mine void is 294.19 acres having capacity of 17 million M³. The practice of mine void filling has started since 15th March, 2014. It has obtained permission from MoEF for one year as pilot project and Consent to Establish from SPCB, Odisha. The detail of the ash disposal areas of the plant is given in **Table-4**.

Name of the ash disposal sites	Area in Acre	Volume in M ³
Quarry no. 4 of Jagannath OCP, MCL	294.19	17000000
Stone quarry at Karanda	2.56	54149
Stone quarry at Karanda	4.71	99792
Stone quarry at Karanda	2.35	49778
Stone quarry at Karanda	2.93	61914
Stone quarry at Karanda	2.24	47350
Stone quarry at Karanda	4.58	96876
Ash Pond	4.78	145102

Table 4 : Details of Ash Disposal Sites

9.0 Observations and Findings of Committee

The locations of the power plants along with mine void and ash pond are given in **Figure-5**. The map also indicates the locations of ground water sampling points.

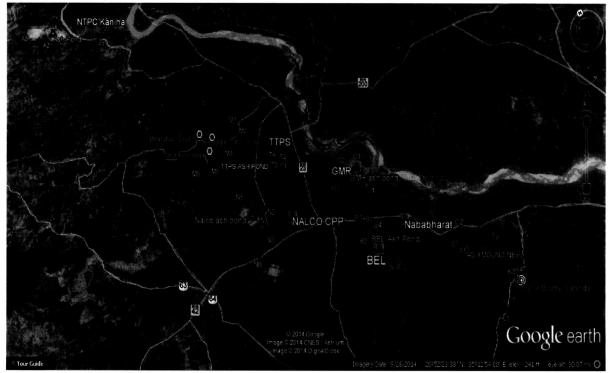


Figure 5 : Locations of Thermal Power Plants, Mine Void, Ash Pond and GW sampling in Angul-Talcher Area

10.0 Ground Water Monitoring:

Ground Water (GW) samples were collected around the Thermal Power Plants ash disposal sites. Details of GW sampling locations are presented in **Table 5**.

Table 5 :	Location of	of Sampling	Stations
-----------	-------------	-------------	----------

SI. No.	Nomenclature of GW Sampling Locations	Description of Sampling Locations	Industry/Ash Pond/ Mine Void/ Stone Quarry
1	A1	Kaniha Market, Gandhi Statue	2 Km distance from ash pond in south-east direction
2	A2	Masunihata near temple	1 Km distance from ash pond in south-west direction
3	A3	Derang village near shiva temple	1.5 Km distance from ash pond in North-west direction
4	A4	Takua Village	2 Km distance from ash pond in north-east direction
5	MI	Birsamunda Square South- Balanda	1 Km distance from mine- void filling in East direction.
6	M2	MCL Staff Quarter No6	1.5 Km distance from mine- void filling in East direction.

SI. No.	Nomenclature of GW Sampling Locations	Description of Sampling Locations	Industry/Ash Pond/ Mine Void/ Stone Quarry
7	M3	Dera ME School	1 .5 Km distance from mine- void filling in North-East direction.
8	M4	NeheruSatabdi Hospital	1.8 Km distance from mine- void filling in East direction.
9	M5	Karadapalli	1 Km distance from mine- void filling in South direction.
10	M6	Badasingada Village	1.5 Km distance from mine- void filling in South-West direction.
11	M7	DeraAnganbadi Kendra	1 Km distance from mine- void filling in South-East direction.
12	NI	Kendudhipa, Balaramprasad	400 Mtr distance from ash pond in South-East Direction.
13	N2	Balaram Prasad Chowk(Bus stop)	1 Km distance from Ash pond in south east direction(in Between ash pond –I & II)
14	N3	Girang, Sidhheswar Temple	1.5 Km distance from ash pond in east direction
15	N4	Kurdul, MatigudiaSahi	800Mtr distance from ash pond in North-west direction
16	N5	Koipasisahi	1 Km distance from Ash pond in north direction
17	N6	Nalco Township (Daily Market)	2 Km from distance ash pond in west direction.
18	TI	Tolkolondi Village	1 Km distance from Ash pond in South East direction
19	T2	Santhapada Village	500 mtr distance from ash pond in East directi;on
20	ТЗ	Jadiamba Village	500 mtr distance from ash pond in south east direction.
21	T4	Santhapda Village	2 Km distance from ash pond in north direction
22	Τ5	Gurujangli village	1 Km distance from ash pond in west direction
23	Gl	Maniabedachowk	1 Km distance from ash pond in east direction
24	G2	Bhagamunda Village	1.5 Km distance from ash pond in North direction
25	G3	Pandarabarenia village	1 Km distance from ash pond in west direction
26	G4	Manpur village	2.0 Km distance from ash pond in south direction
27	B1	Narendrapur Village	1.5 Km distance from ash pond in north west direction
28	B2	Talbahal , Near Boundry wall	1 .5Km distance from ash pond in South-west direction

SI. No.	Nomenclature of GW Sampling Locations	Description of Sampling Locations	Industry/Ash Pond/ Mine Void/ Stone Quarry
29	В3	Kantabania Primary school	1.5 Km distance from ash pond in west direction
30	Β4	Sibpur Gate No-10	2.0 Km distance from ash pond in South east direction
31	DI	NimidhaGadiaSahi Primary School	1 Km distance from ash mound in east direction
32	D2	Chintapokhari Bazar Chhak	1.5 Km distance from ash mound in North direction
33	K1	Karandachowk	2 Km distance from stone quarry in South west direction
34	К2	BaramundaChowk	1.5 Km distance from stone quarry in North east direction
35	КЗ	Badalo village entrance	2 Km distance from stone quarry in east direction
36	K4	BadaloGhodadian U.P school	2 Km distance from stone quarry in North direction

Industry wise ground water samples were collected around the ash disposal sites and the analysis result is presented in **Table No. 6 to 11**.

SI.	Sampling Locations	Nomencl		Paramete	rs (with U	nit) & Resu	lt
No.		ature	рН	EC	T.Fe	Cr⁺ő	T.Cr
			-	(µ\$/cm)	(mg/l)	(mg/l)	(mg/l)
1.	Kendudhipa,	N1	7.4	1089	0.05	0.025	0.177
	Balaramprasad		7.4	1007	0.00	0.020	0.177
2.	BalaramprasadChowk (Bus	N2	7.3	771	2.49	0.026	0.117
	stop)		7.5	771	2.47	0.020	0.117
3.	GirangSidhheswar Temple	N3	7.2	1069	0.27	0.033	0.083
4.	Kurdul, MatigudiaSahi	N4	7.1	465	0.46	0.035	0.145
5.	Koipshisahi	N5	7.1	1361	0.36	0.036	0.120
6.	Nalco Township (Daily	N6	7.3	1487	0.01	0.035	0.098
	Market)		7.5	1407	0.01	0.000	0.070

Table 6 : Analysis Results of GW around Ash Pond, NALCO, CPP

SI.	Course alline of	Nome			Parame	eters (w	ith Unit)	& Resu	It	
No.	Sampling	nclat	Cd	Pb	Mn	Cu	Zn	Ni	As	Hg
	Locations	ure	(mg/ĺ)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1.	Kendudhipa,	N1	< 0.002	<0.002	0.002	0.005	0 102	<0.002	<0.002	0.00032
	Balaramprasad		<0.002	<0.002	0.002	0.000	0.102	\$0.002	30.002	0.00002
2.	BalaramprasadC	N2	<0.002	< 0.002	0.043	0.003	0.388	<0.002	<0.002	0.00013
	howk (Bus stop)		~0.002	-0.002	0.045	0.005	0.000	\$0.002	-0.002	0.00010

SI.	Samplina	Nome			Parame	eters (w	ith Unit)	& Resu	lt	
No.	Sampling Locations	nclat	Cd	Pb	Mn	Cu	Zn	Ni	As	Hg
	Localions	ure	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
3.	GirangSidhhesw ar Temple	N3	<0.002	<0.002	0.039	<0.002	0.142	<0.002	<0.002	0.00032
4.	Kurdul, MatigudiaSahi	N4	<0.002	<0.002	0.002	<0.002	0.011	<0.002	<0.002	0.00032
5.	Koipshisahi	N5	<0.002	<0.002	0.077	0.002	0.056	< 0.002	<0.002	0.00013
6.	Nalco Township (Daily Market)	N6	<0.002	<0.002	0.047	0.003	0.002	<0.002	<0.002	0.00023

It may be seen from the above analysis results that all the parameters meet the permissible limit of drinking water standard (IS10500:2012). Copy of BIS standard is enclosed as **Annexure-B**.

Table 7 : Analysis Results of GW around South Balanda Coal Mine Void, TTPS (NTPC), Talcher

SI.		Nomencl	Parameters (with Unit) & Result								
No.	Sampling Locations	ature	рН	EC	T.Fe	Cr+6	T.Cr				
			-	(µ\$/cm)	(mg/l)	(mg/l)	(mg/l)				
1.	Tolkolondi village	T1	7.6	1143	0.17	0.015	0.129				
2.	Santhapada village	T2	6.9	270	108.5	0.030	0.192				
3.	Jadiamba village	T3	7.7	1081	0.01	0.020	0.127				
4.	Santhapada village	T4	7.1	507	0.29	0.021	0.119				
5.	Gurujanguli village	T5	7.4	2066	6.46	0.020	0.080				

SI.	Sampling	Nomenc			Parame	eters (wi	th Unit)	& Resul	t	
No.	Locations	lature	Cd (mg/l)	Pb (mg/l)	Mn (mg/l)	Cu (mg/l)	Zn (mg/l)	Ni (mg/l)	As (mg/l)	Hg (mg/l)
1.	Tolkolondi village	TI	<0.002	<0.002	0.007	<0.002	0.022	<0.002	<0.002	0.00081
2.	Santhapada village	T2	<0.002	0.011	0.086	0.024	1.672	<0.002	<0.002	0.00032
3.	Jadiamba village	T3	<0.002	<0.002	<0.002	0.012	0.003	<0.002	<0.002	0.00013
4.	Santhapada village	T4	<0.002	<0.002	0.002	0.004	0.219	<0.002	<0.002	0.00019
5.	Gurujanguli village	Т5	<0.002	<0.002	0.012	0.014	0.127	<0.002	<0.002	0.00006

It may be seen from the water quality results that the parameters are within the permissible limit of IS 105000-2012.

SI.		Nomencl		Parameter	rs (with Uni	it) & Result	
No.	Sampling Locations	ature	рН -	EC (µ\$/cm)	T.Fe (mg/l)	Cr⁺⁴ (mg/l)	T.Cr (mg/l)
1.	Kaniha Market, Gandhi Statue	A1	6.9	971	0.25	0.020	0.112
2.	Masunihata, Near Temple	A2	6.9	794	4.19	0.020	0.082
3.	Derang, Near Shiva Temple	A3	6.8	1146	0.78	0.021	0.167
4.	TakuaVillage	A4	6.7	528	1.26	0.026	0.105

Table 8 : Analysis Results of GW around Ash Pond of TSTPP, NTPC, Kanhia

SI.	Sampling	Nomen		Parameters (with Unit) & Result								
No.	Locations	clature	Cd	Pb	Mn	Cu	Zn	Ni	As	Hg		
			(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)		
1.	Kaniha Market, Gandhi Statue	Al	<0.002	<0.002	0.085	0.004	0.221	<0.002	<0.002	0.00069		
2.	Masunihata, Near Temple	A2	<0.002	<0.002	0.018	<0.002	0.059	<0.002	<0.002	0.00006		
3.	Derang, Near Shiva Temple	A3	<0.002	<0.002	<0.002	0.003	0.057	<0.002	<0.002	0.00084		
4.	TakuaVillage	A4	< 0.002	<0.002	0.073	<0.002	0.016	<0.002	<0.002	0.00085		

It may be seen from the water quality results that the parameters are within the permissible limit of IS 105000-2012.

Table 9 : Analysis Results of GW around Nimidha Ash Mound, Nav BharatVentures Ltd.

SI.	Sampling	Nomenc		Parameter	rs (with Unit)	& Result	
No.	Locations	lature	рН	EC	T.Fe	Cr+6	T.Cr
			-	(µS/cm)	(mg/l)	(mg/l)	(mg/l)
1.	NimidhaGadiaS	D1					
	ahiPrimary		6.9	234	6.83	0.005	0.055
	School						
2.	Chintapokhari	D2	7.1	664	0.24	0.005	0.154
	Bazaar Chhak		7.1	004	0.24	0.000	0.134

SI. No.	Sampling Locations	Nomenc lature		F	Parame	ters (wit	h Unit)	& Resul	t	
			Cd	Pb	Mn	Cu	Zn	Ni	As	Hg
			(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1.	NimidhaGadia	D1								
	SahiPrimary		<0.002	<0.002	0.031	<0.002	1.280	<0.002	<0.002	0.00006
	School									
2.	Chintapokhari	D2	-0.000		0.010	-0.000	0.0(1	<0.000	-0.000	0.00013
	Bazaar Chhak		<0.002 <0.002 0.019 <0.002 0.061 <0.002 <0.002 0.00013							

Concentration of total Iron was found to be high (6.83 mg/l) whereas,

other parameters are within the permissible limit.

SI.	Sampling Locations	Nomen		Parameter	s (with Un	it) & Resul	It
No.		clature	рН	EC	T.Fe	Cr+6	T.Cr
				(µ\$/cm)	(mg/l)	(mg/l)	(mg/l)
1.	ManiabedaChhak (East						
	side), 0 km distance from	G1	7.3	822	0.29	0.01	0.072
	Ash pond						
2.	Bhagamunda Village						
	(North side), 1.5 km	G2	7.2	834	0.36	0.013	0.087
	distance from Ash pond						
3.	PandaraBarenia Village						
	(West side), 1.0 km	G3	7.3	818	0.07	0.011	0.107
	distance from Ash pond						
4.	Manapur Village (South						
	side), 2.0 km distance from	G4	7.3	599	1.28	0.016	0.082
	Ash pond						

Table	10	:	Analysis	of	Ground	Water	around	Ash	Pond	of	M/s.	GMR
Kama	lange	a	Energy Lto	1.								

SI.	Sampling	Nome			Param	eters (w	ith Unit) & Resu	lt	
No.	Locations	nclatu	Cd	Pb	Mn	Cu	Zn	Ni	As	Hg
		re	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1.	ManiabedaChha k (East side), 0 km distance from Ash pond	Gl	<0.002	<0.002	0.017	<0.002	0.158	<0.002	<0.002	0.00013
2.	Bhagamunda Village (North side), 1.5 km distance from Ash pond	G2	<0.002	<0.002	0.041	<0.002	0.554	<0.002	<0.002	0.00006
3.	PandaraBarenia Village (West side), 1.0 km distance from Ash pond	G3	<0.002	<0.002	0.021	0.003	0.104	<0.002	<0.002	0.00032
4.	Manapur Village (South side), 2.0 km distance from Ash pond	G4	<0.002	<0.002	0.018	0.018	0.074	<0.002	<0.002	0.000057

It may be seen from the water quality results that the parameters are within the permissible limit of IS 105000-2012.

Table 11 : Analysis Results of GW around Karanda Stone Quarry and Sibpur Ash Mound by M/s Bhushan Energy Ltd.

Sibpur Ash Mound:

SI.		7. 4		Parameters (with Unit) & Result						
No.	Sampling Locations	Nomenclature	рН	EC	T.Fe	Cr+6	T.Cr			
			-	(µS/cm)	(mg/l)	(mg/l)	(mg/l)			
1.	NarendrapurVillage	B1	7.1	1922	0.11	0.036	0.095			
2.	Talbahal, Near Boundary Wall	B2	7.5	1085	5.35	0.031	0.037			
3.	Kantabania Primary School	ВЗ	7.3	964	2.12	0.030	0.102			
4.	Sibpur, Gate No-10	B4	8.1	392	3.82	0.020	0.098			

SI.	Sampling	Nomen	Nomen Parameters (with Unit) & Result								
No.	Locations	clature	Cd (mg/l)	Pb (mg/l)	Mn (mg/l)	Cu (mg/l)	Zn (mg/l)	Ni (mg/l)	As (mg/l)	Hg (mg/l)	
1.	NarendrapurVill age	B1	<0.002	<0.002	0.028	0.010	0.005			0.00014	
2.	Talbahal, Near Boundary Wall	B2	<0.002	<0.002	0.054	0.003	0.210	<0.002	<0.002	0.00014	
3.	Kantabania Primary School	B3	<0.002	<0.002	0.012	0.003	0.064	<0.002	<0.002	0.00076	
4.	Sibpur, Gate No-10	B4	<0.002	0.006	0.070	0.003	0.008	<0.002	<0.002	0.00019	

Karanda Stone Quarry

SI.		Nomenc		Param	eters (with l	Jnit) & Resul	ł
No.	Sampling Locations	lature	рН	EC	T.Fe	Cr+6	T.Cr
			-	(µS/cm)	(mg/l)	(mg/l)	(mg/l)
1.	KarandaChowk	K1	7.0	761	4.9	0.035	0.05
2.	BaramundaChowk	K2	7.5	1003	0.24	0.035	0.120
3.	BadaloVillage Entrance	КЗ	7.1	955	0.86	0.038	0.120
4.	BadaloGhodadian UP School	K4	7.3	917	0.05	0.040	0.090

SI.	Sampling	Nomen	Nomen Parameters (with Unit) & Result							
No.	Locations	clature	Cd (mg/l)	Pb (mg/l)	Mn (mg/l)	Cu (mg/l)	Zn (mg/l)	Ni (mg/l)	As (mg/l)	Hg (mg/l)
1.	KarandaCho wk	К1	<0.002	<0.002	0.027	0.004	0.068	<0.002	<0.002	0.00019
2.	BaramundaC howk	К2	<0.002	<0.002	0.007	0.009	0.056	<0.002	<0.002	0.00019
3.	BadaloVillage Entrance	КЗ	<0.002	<0.002	0.032	0.002	0.009	<0.002	<0.002	0.00019
4.	BadaloGhoda dian UP School	K4	<0.002	0.004	0.042	0.007	0.019	<0.002	<0.002	0.00037

It may be seen that the parameters are within the permissible limit of IS 105000-2012.

Besides ground water samples collected around individual ash disposal sites of thermal power plants, ground water samples were also collected at other strategic locations to assess and compare the quality. The analysis results are given in **Table-12**.

Table 12 : Analysis Results of GW in Common Areas of Ash Disposal	Sites by
the Thermal Power Plants	

SI.	Sampling Locations	Nomencl		Paramete	ers (with Uni	t) & Result	
No.		ature	pH -	EC (µ\$/cm)	T.Fe (mg/l)	Cr⁺⁴ (mg/l)	T.Cr (mg/l)
1.	Birsamunda Square, South Balanda	M1	6.5	303	38.25	0.01	0.028
2.	MCL Staff Quarter No-6	M2	6.7	211	19.4	0.006	0.055
3.	Dera M.E. School	MЗ	6.1	752	0.16	0.006	0.052
4.	Nehru Shatabdhi Hospital	M4	7.2	805	2.5	0.006	0.092
5.	Karadapalli	M5	7.1	2303	1.2	0.008	0.078
6.	Badasidngada village (Back side of Master Camp)	M6	7.2	888	0.15	0.010	0.088
7.	Dera Anganbadi Kendra	M7	6.5	314	1.48	0.01	0.083

SI.	Sampling	Nomen			Parame	eters (w	ith Unit)	& Resul	t	
No.	Locations	clature	Cd	Pb	Mn	Cu	Zn	Ni	As	Hg
			(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1.	Birsamunda		ъ.							
	Square, South	M1	<0.002	0.002	0.088	0.002	0.599	< 0.002	<0.002	0.00013
	Balanda									
2.	MCL Staff	M2	-0.000		0.000		0.077	-0.000	-0.000	0.00044
	Quarter No-6	IVIZ	<0.002	<0.002	0.088	<0.002	0.077	<0.002	<0.002	0.00044
3.	Dera M.E. School	MЗ	<0.002	0.002	0.013	0.008	1.050	0.002	<0.002	0.00032
4.	Nehru Shatabdhi	M4	<0.000	<0.000	0.025	0.014	0.017	-0.000	<0.000	0.00013
	Hospital	///4	<0.002	<0.002	0.035	0.014	0.017	<0.002	<0.002	0.00013
5.	Karadapalli	M5	<0.002	<0.002	0.030	0.003	0.689	<0.002	<0.002	<0.00006
6.	Badasidngada									
	village (Back		-0.000	10,000	0.010	-0.000	-0.000	-0.000	-0.000	0.0000/
	side of Master	M6	<0.002	<0.002	0.012	<0.002	<0.002	<0.002	<0.002	0.00006
	Camp)									
7.	DeraAnganbadi	M7	<0.000	0.010	<0.000	0.027	2 0 2 2	<0.000	<0.000	0.00006
	Kendra	1017	<0.002	0.010	<0.002	0.036	2.023	<0.002	<0.002	0.00006

It can be seen from the above table that the concentration of total Iron is very high at the Birsamunda square, South Balanda.

11.0 Ash Analysis Result

The ash samples were collected from ash disposal sites of these power plants in the area and the analysis results are presented in **Table 13**.

Table 13 : Ash Analysis Results

SI. No.	Sampling location	рН (1:5)	Cr+6	Cd	Pb	Co	Mn	Cu	Zn	Ni	As
							(mg/k	g)			
1.	Ash sample from Kranda Stone Quarry , Bhusan Energy Ltd.	9.6	ND	9.97	170.6	3.73	197	305.5	62.1	13.9	17.9
2.	Ash from Ash Pond of Bhushan Energy Ltd.	7.1	0.81	4.1	58.8	3.7	1301.9	296.4	48.6	13.2	12.5
3.	Ash sample from NALCO CPP, Ash pond I	7.8	ND	26	72	8	11.2	256.9	10.4	2.8	8.9
4.	Ash sample from NALCO CPP, Ash pond II	5.8	ND	37.3	115.9	0.6	29.2	228.1	8.8	3.9	4.7
5.	Ash sample from Nimidha ash mound of Navabharat Ventures Ld.	6.5	ND	2.1	69.3	3.7	247.7	222.6	36.6	12.7	18.3
6.	Ash sample from Ash Pond TTPS(NTPC), Talcher	6.7	ND	26.6	310.4	1	3.7	166.2	3.9	3.7	14.1
7.	Ash sample from mine void filling of TTPS (South Balanda)	6.6	0.718	11.2	159.6	0.5	10.8	166	3.8	3	10.7
8.	Ash sample from mine void filling of Navabharat (South Balanda)	6.1	ND	2.9	66.6	2.4	135.8	169.3	35.3	8.5	8.9
9.	Ash sample from Lagoon I GMR Kamalaga Energy Ltd	8.4	0.37	10	71.6	1.7	54.3	151.4	15.7	23.8	9.1
10.	Ash sample from lagoon II GMR	7.5	ND	91.2	1789.7	1.5	215	142.3	22.3	6.3	9
11.	Ash sample from Ash Pond NTPC, Kaniha	7.1	ND	6.6	130.6	0.6	43.3	126.8	24.1	2.8	11.9
12.	Ash sample from mine void ofBhushan Energy Ltd. (Jagannath Quarry No 4)	9.4	ND	0.248	12.7	5.186		21.24	156.9	16.26	29.4

It has been observed that the concentration of heavy metals in all fly ash samples are within the limit specified in Schedule-2 of Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 indicating that fly ash is non-hazardous in nature.

12.0 Stack Emission Monitoring

All the thermal power plants have installed Electro-static Precipitator (ESP) as air pollution control measures to control Particulate Matter emission. The outlets of ESPs are connected to stacks of adequate height. The flue gas volume and height of the stacks is given in **Table 14**. Stack emission monitoring data alongwith the prescribed standard w.r.t. Particulate Matter is given in **Table 15**.

SI.	Name of the Power	Unit	Flue Gas	Stack Height in
No.	Plants		VolumeNm ³ / hr	meter
1.	NALCO Ltd, Captive	Unit-1 (120 MW)	9,82,500	150
	Power Plant, Angul	Unit-2 (120 MW)	9,82,500	130
		Unit-3 (120 MW)	9,82,500	150
		Unit-4 (120 MW)	9,82,500	150
		Unit-5 (120 MW)	9,82,500	150
		Unit-6 (120 MW)	9,82,500	130
		Unit-7 (120 MW)	9,82,500	220
		Unit-8 (120 MW)	9,82,500	220
		Unit-9 (120 MW)	9,82,500	220
		Unit-10 (120 MW)	9,82,500	220
2.	Talcher Thermal	Unit-1 (60 MW)	2,71,920	60
	Power Station Ltd.	Unit-2 (60 MW)	2,71,920	
	(NTPC) , Talcher,	Unit-3 (60 MW)	2,75,557	60
	Angul	Unit-4 (60 MW)	2,75,557	
		Unit-5 (110 MW)	6,02,261	125
		Unit-6 (110 MW)	6,02,261	120

Table 14 : Unit wise Power Generation Capacity with Flue Gas Volume & StackHeight of Thermal Power Plants in Angul-Talcher Area

SI.	Name of the Power	Unit	Flue Gas	Stack Height in
No.	Plants		VolumeNm ³ / hr	meter
3.	TSTPS, Deepsikha,	Unit-1 (500 MW)	28,40,000	275
	KanihaAngul	Unit-2 (500 MW)	28,40,000	2/3
		Unit-3 (500 MW)	27,99,900	275
		Unit-4 (500 MW)	27,99,900	2/0
		Unit-5 (500 MW)	27,99,900	275
		Unit-6 (500 MW)	27,99,900	2/3
4.	Nava Bharat	Unit-1 (30 MW)	2,17,800	75
	Ventures Ltd.,	Unit-2 (64 MW)	4,68,000	95
	Dhenkanal	Unit-3 (64 MW)	4,68,000	95
5.	GMR Kamalang	Unit-1 (350 MW)	23,07,600	275
	Energy Ltd,	Unit-2 (350 MW)	23,07,600	
	Dhenkanal	Unit-3 (350 MW)	23,07,600	275
6.	Bhushan Energy Ltd.,	Unit-1 (150 MW)	10,22,256	125
	Dhenkanal	Unit-2 (150 MW)	10,22,256	125

Table 15 : Stack Emission Analysis Data of Thermal Power Plants of Angul –
Talcher Area

SI.	Thermal power plant	Loco	ation of	Particulate	Prescribed
No.		san	npling	Matter	standards
				(mg/Nm³)	(mg/Nm³)
1.	M/s. NALCO (CPP) , Angul	Unit-1	Pass-A	32	100
	5	Unit-1	Pass-B	26	100
		Unit-3	Common	91	100
		Unit-4	Pass-A	36	100
		Unit-4	Pass-B	68	100
		Unit-4	Pass-C	57	100
		Unit-8	Pass-A	42	100
		Unit-8	Pass-B	81	100
		Unit-9	Pass-A	24	80
		Unit-9	Pass-B	37	80
		Unit-10	Pass-A	23	80

SI.	Thermal power plant	Loco	ation of	Particulate	Prescribed
No.		san	npling	Matter	standards
		11 - ± 0		(mg/Nm³)	(mg/Nm³)
		Unit-10	Pass-B	75	80
2.	M/s. Talcher Super Thermal	Unit-2	Pass-A	72	100
	Power Station (NTPC), Kaniha,	Unit-2	Pass-B	45	100
	Talcher, Angul	Unit-3	Pass-A	68	100
		Unit-3	Pass-B	32	100
		Unit-4	Pass-A	89	100
		Unit-4	Pass-B	28	100
		Unit-5	Pass-A	24	100
		Unit-5	Pass-B	32	100
		Unit-6	Pass-A	29	100
		Unit-6	Pass-B	43	100
3.	M/s. Talcher Thermal Power	Unit-1	-	56	100
	Station (NTPC), Talcher, Angul	Unit-2	-	73	100
		Unit-3	-	30	100
		Unit-4	-	45	100
		Unit-5	Pass-B	74	100
		Unit-5	Pass-C	57	100
4.	M/s. Nava Bharat Ventures Ltd.,			18	50
	Kharagprasad, Dhenkanal	Unit-1	Boiler-II	10	50
5.	M/s. GMR Kamalanga Energy	Unit-1	-	36	50
	Ltd., Kamalanga, Dhenkanal	Unit-2	-	23	50
6.	M/s. Bhushan Energy Ltd.,			39	50
	Narendrapur, Meramandali,	CPP	Boiler-II		
	Dhenkanal				

It may be seen from the monitoring results that the Particulate Matter (PM) emissions from all the power plants are within the prescribed standard. This indicates that the pollution control equipments are working effectively.

13.0 Ash Generation & Utilisation

The status of the ash generation and utilisation by the six thermal power plants for the year 2013-14 is enclosed at **Annexure-C**. Present method of ash utilization and disposal practices adopted by these thermal power plants is compiled and given in **Annexure-D**. It may be seen that three TPPs (TTPS, Talcher, Nav Bharat Ventures Ltd. & Bhushan Energy) are able to utilize 100% of fly ash due to mine void filling.

14.0 Legal Provisions

The Ministry of Environment and Forest has issued Notification for Fly Ash Utilization vide S.O. No. 763(E) on 14th Sept, 1999 which was amended on 27th Aug, 2003 and 3rd Nov, 2009 vide S.O. No. 979(E) and 2804(E) respectively. As per this notification, use of fly ash in construction activities such as in road making, embankments or use as landfill to reclaim low lying areas including back filling in abandoned mines or pitheads is permissible. Further according to this notification, at least 25% of fly ash on volume to volume basis has to be used with overburden for back filling of open cast mines. This activity has to be undertaken under the guidance of Directorate General of Mines Safety (DGMS).

15.0 Conclusion

Based on the observations and findings, the Committee concludes the following:

1) Analytical results of ground water samples collected from 36 locations show that the values are within the permissible levels of BIS guidelines except Iron. The Iron concentration exceeds the BIS limits at 15 locations. This could be due to the geogenic factors. The samples collected around fly ash disposal locations particularly in the contiguous area of ash pond also did not show any values higher than the guidelines.

- 2) The Committee also noted that the results of the study conducted by CSIR-NEERI (Impact assessment of ash filling by TTPS on water resources in the surrounding of South Balanda Mine pit and Old ash pond area) also did not indicate higher concentration of heavy metal in the observation wells surrounding the ash filled mine voids.
- 3) The stack samples collected from six (6) power plants were found to be complying with the prescribed norms of particulate matter (PM) of 100 mg / Nm³ & 50 mg / Nm³, as prescribed by SPCB, Odisha.
- 4) All the power plants have installed electrostatic precipitators (ESP). It has also been noted that the On-line Emission monitoring devices and continuous AAQ monitoring stations have been installed by the power plants.
- 5) Fly ash samples analyzed from 12 locations also show the parameters within the specified limits of Scheduled-2 of Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 with respect to heavy metals.
- 6) The activity of mine void / stone quarry filling being carried out by M/s. TTPS (NTPC), M/s. Bhushan Energy Ltd. and M/s. Nava Bharat Ventures Ltd. is one of the permitted options under the existing Fly Ash Utilization Notification, 1999 (vide S.O No. 763(E))
 as amended thereafter.
- 7) The Committee noted that the Ministry of Environment and Forests has given permission on 5th Sept, 2013 to M/s. NALCO, M/s. TTPS, Talcher and M/s. Bhushan Energy Ltd. for disposal of fly ash into respective mine voids as pilot project for one year.

- 8) As per the study conducted by CSIR-NEERI during 2012-14, titled "Study of Effects due to Ash Fill Sites of Talcher Thermal Power Plant on Flora and Fauna in the surrounding area of South Balanda Mine Pit and Jagananth Mine Pit", there is no ecological sensitive flora or fauna in the study area. Leaf injury symptoms due to fly ash were also not observed. Although, dust deposition was observed on leaves, microscopic studies revealed that there was stomata indicating that deposition of dust / fly ash is not having an adverse impact on the flora surrounding the ash dumping sites.
- 9) During the field visit of the Committee, good vegetation was observed around the ash disposal sites. Further, plantation was seen on fly ash mound at Sibpur dump area of M/s. Bhushan Energy Ltd., and South Balanda abandoned pit by M/s. Nava Bharat Ventures Ltd.
- 10) The Committee could see a few birds in the ash ponds of NALCO and GMR.
- 11) The ash disposal area is either above ground level in Ash Pond / Ash Mound or below ground level in Coal Mine void of MCL, Talcher or quarry filling. Mode of disposal is different, i.e. dry form and slurry form. The consolidation time in case of slurry disposal is different at different places depending on slurry density. However, there is a requirement of need based operating procedure.

16.0 Opinion

- Since, the generation of fly ash by these thermal power plants is too high and scope of its utilization in bricks manufacturing and infrastructure projects is limited, mine void and quarry reclamation by back filling with fly ash seems to be the most feasible option for utilization of fly ash in the area.
- 2) The filling of the void created in the coal mine of M/s. MCL would require huge quantity of overburden / external soil / sand to be transported from some other sites. This would create air pollution and environmental effects at some other sites. To avoid this, filling up of these voids by the available fly ash seems appropriate. However, the thermal power plants should be asked to monitor the ground water quality (pre & post-monsoon every year) around the ash disposal sites and submit the same to State Pollution Control Board, who would in turn carryout the trend analysis.
- 3) It has been observed that, huge area of land is acquired for ash ponds and still there is no system available for major uptake of fly ash. Utilization of fly ash by manufacturing bricks / road construction / cement manufacturing is not encouraging. Hence, the Committee felt that, filling of fly ash in voids of abandoned mine seems to be the only option.
- 4) Disposal of fly ash in the form of slurry is found to be the better option as it avoids plying of large number of vehicles on the road leading to traffic congestion. This method also facilitates recycling / reuse of decanted water back to the plant for preparation of ash slurry.

- 5) High Density Slurry Disposal (HDSD) for mine void filling is preferred for quick consolidation of slurry. However, techno economic feasibility is to be evaluated.
- 6) The Committee however, has not ignored other options like making bricks, road construction or manufacturing cement. The back filling of mine void should be considered only after exploring all these options.
- 7) The studies of CSIR-NEERI have not shown any signs of heavy metal contamination in the ground water. However, the Committee strongly felt that there is a need for comprehensive monitoring (pre-monsoon and post-monsoon) of ground water quality surrounding the ash disposal sites. This monitoring should be carried out on a study area delineated on the watershed principle.

Dr. A. B. Akolkar, 575

Member Secretary, Central Pollution Control Board, New Delhi

Shri^vRajiv Kumar, Member Secretary, State Pollution Control Board, Odisha

R Myon -10-1

Dr. Paras Ranjan Pujari, Nominated Scientist, CSIR-NEERI, Nagpur

Ms Sanchita Jindal, Director, MoEF, Govt. of India, New Delhi

Shri Mantu Biswas, Regional Controller of Mines, Indian Bureau of Mines, Bhubaneswar

Annexure-A

List of Officials of TPPs present during the field visit of the Committee

SI.	Thermal Power Plant	Name of the Officials & Designation
No.		
1.	NALCO, CPP, Angul	Shri K. K. Panda, General Manager &
	t t	Other Officials
2.	Talcher Thermal Power Station	Shri K. R. C. Murthy, General Manager
	(NTPC), Talcher, Angul	& Other Officials
3.	Talcher Super Thermal Power	Shri N. K. Kothari, Group General
	Plant, NTPC, Kaniha, Angul	Manager & Other Officials
4.	Nava Bharat Ventures Ltd.,	Shri N. P. Patra, Vice President & Other
	Dhenkanal	Officials
5.	GMR Energy, Kamalanga,	Shri Arindam Chatterjee, Vice
	Dhenkanal	President & Other Officials
6.	Bhushan Energy Ltd., Dhenkana	Shri C. B. S. Sengar, Vice President &
		Other Officials

INDIAN STANDARD SPECIFICATIONS FOR DRINKIN G WATER (IS: 10500)

SI. No.	Parameters	Desirable Limit
1.	Colour	5
2.	Turbidity	10
3.	РН	6.5 to 8.5
4.	Total Hardness	300
5.	Copper as Cu	0.05
6.	Iron	0.3
7.	Manganese	0.1
8.	Nitrates	45
9.	Mercury	0.001
10.	Cadmium	0.01
11.	Arsenic	0.05
12.	Lead	0.1
13.	Zinc	5.0
14.	Chromium as Cr ⁺⁶	0.05

<u>Annexure-C</u> STATUS OF UTILISATION OF ASH BY THERMAL POWER PLANTS OF ANGUL-TALCHER AREA, IN ODISHA FOR THE YEAR 2013-2014

Ŧ		~		~		2		-
% of Utilizati	5	71.67	100	39.69	100	47.92	100	57.21
Total ash utilized	(MT)	1377361	1217254	2506000	200870	152458	586784	6040727
	Aggre gates	0	0	0	0	0	0	0
-	Road Making	0	0	0	0	0	10000	10000
	Land Develop ment	222000	o	565000	40548	129778	525209	1482535
u	Dyke Raising	785992	0	1860000	0	0	14000	2659992
Modes of Utilization	Coal Mine Void filling	0	1174794	0	65335	0	5575	1245704
Mode	Quarry filling	22800	0	0	28827	0	0	51627
	Asbestos	81390	2545	26000	0	0	0	109935
	Cement	0	33160	0	65700	0	0	98860
	Brick manufa cturing (MT)	265179	6755	55000	460	22680	32000	382074
Total Ash Generated	(MT)	1921804	1217254	6313000	200870	318145	586784	10557857
Name and address of the	unit	NALCO Ltd, Captive Power Plant, Angul	Talcher Thermal Power Station Ltd.(NTPC), Talcher, Angul	TSTPS(NTPC), Deepsikha, KanihaAngul	Nava Bharat Ventures Ltd., Dhenkanal	GMR Kamalang Energy Ltd, Dhenkanal	Bhushan Energy Ltd., Dhenkanal	Total
SI. No.		-	2	n	4	Ś	6	

Annexure-D

· .

Mode of Ash Disposal Practices Adopted By the Thermal Power Plants

SI.	Name						Scope &	Scope & Present mode of disposal of ash	ode of disp	osal of ash				
No.			Brick	Supply to	y to	Low lan	Low land filling	Abando	Abandoned Quarry filling	y filling		Ash Pond / Ash	Coal Mine	Coal Mine Void Filling
	Power Plant	Manu	Manufacturing	Cement / Asbestos Units	ent / is Units						Mo Disp	Mound Disposal		
		Scope	Present	Scope	Prese	Scope	Present	Scope	Form of	Present	Mode	Present	Mode	Present
		•			nt		Status		disposal	Status		Status	,	Status
					Status									
Ч	Nałco	3 brick	Ľ	Supply	lt is	No low	No	Stone	Dry	Suspend	Ash	lt is a	Mine void	The project is
	Ltd,	plants	opernatio	to	conti-	land	more	quarry in	form	ed for	disposed	continuin	. <u>c</u>	under
	Captive	inside	nal	Asbest	nuing.	inside	land	Paranga	through	the	off in	ß	Bharatpur	implementati
	Power	and 42	state.	SO		the	filling.	and	covered	time	lean	process.	OCP of MCL	on
	Plant,	nos of		Units		plant		Talataila	vechicle	being.	slurry &		has been	stage.
	Angul	outsid				is		areas	s by		HCSD		alloted.	
	i S	e				availabl		of Angul.	road.		form in			
		brick				e.					to the			
		plants.									ash			
			-		z						pond.			
2	Talcher	m	ln	Supply	Conti-	No	No	No	Not	No	In lean	25 % of	Lean slurry	75 % of ash
	Thermal	brick	opernatio	to	nuing	land	activity	quarry	applicab	activity	slurry	ash	form	meant for
	Power	plants	nal	Asbest		filling		has	le		form to	meant for	to the mine	disposal
	Station	inside	state.	SO				been			contigen	disposal	void	in lean slurry
	Ltd.	and		Unit.				alloted.			су	in lean	of South	form
	(NTPC),	18									pond.	slurry		is disposed
	Angul	nos of										form	coal mine of	off in
	0	outsid										is	MCL	the mine
		e										disposed	through	void.
		brick										off in	pipe line.	
_		plants										contigenc		
												y pond.		

	oid Filling	Present Status	In the process of obtaining necessary clearances. No dumping has started.	In active stage.
	Coal Mine Void Filling	Mode	Quarry no. It 8 of p Jagannath c coal mine of n been b alloted. T	Dry transportati on through covered vechicles and disposed disposed into the void of South Balanda coal mine of MCL.
	Ash Pond / Ash Mound Disposal	Present Status	lt is a continuin g process.	Temporar ily suspende d for the time being .
_	Ash Por Mo Disp	Mode	Lean slurry disposal through pipe line into the ash pond.	Ash mound at Nimidha
Scope & Present mode of disposal of ash	y filling	Present Status	No activity	In operatio n
ode of disp	Abandoned Quarry filling	Form of disposal	Not applicab le	Dry form through covered vechicle s by road.
Present m	Abando	Scope	No quarry been alloted.	Stone quarry at Bodalo in Dhenkan al.
Scope &	Low land filling	Present Status	No low land filling at present	At present no land filling is in practice
	Low lar	Scope	Margin al Scope	There is scope.
	Supply to Cement / Asbestos Units	Prese nt Status	Conti- nuing	Conti- nuing
	Supply to Cement / Asbestos UI	Scope	Supply to Asbest os unit	Suppel y to Cemen t units.
	Brick Manufacturing	Present Status	In opernatio nal state.	n opernatio nal state.
	Manu	Scope	5 brick plants inside and 25 nos of outsid e brick plants	Brick unit inside the plant.
Name	of the Power Plant		TSTPS, (NTPC), Deepsikh a, Kaniha, Angul	Nava Bharat Ventures Ltd. Dhenkan al
SI.	No.		m	4

	Void Filling	Present Status	No activity In active stage. Major mode of disposal.
	Coal Mine Void Filling	Mode	No coal mine void has been alloted. Dry transportati on through bulkers and disposed into the void of quarry no. 4 of agannath OCP of MCL in slury form.
	Ash Pond / Ash Mound Disposal	Present Status	lt is a continuin g process. Suspende d and d and dumping.
	Ash Por Mo Disp	Mode	Ash disposed disposed off in HCSD Form inside the plant premises . Sibapur.
Scope & Present mode of disposal of ash	y filling	Present Status	No activity n.
ode of disp	Abandoned Quarry filling	Form of disposal	Dry form through covered vechicle s by road.
Present m	Abando	Scope	No quarry has been alloted. Stone quarry in Karanda Village in Dhenkan al.
Scope &	Low land filling	Present Status	No activitie s at present. U utilized.
	Low lan	Scope	Little area inside for filling. Back filling of Project area.
	Supply to Cement / Asbestos Units	Prese nt Status	
	Supp Cem Asbest	Scope	2 2 2
	Brick Manufacturing	Present Status	Practice is followed. In opernatio state.
	Manu	Scope	No brick blant inside . But 21 nos of brick units. Brick units inside Plant.
Name	of the Power Plant		GMR Kamalan g Energy Ltd, al Bhushan Energy Ltd., Dhenkan al
SL.	No.		۰ v