| Sample | Reg. | No.: | | |--------|------|------|--| | | | | | # CENTRAL POLLUTION CONTROL BOARD Parivesh Bhawan, East Arjun Nagar, Delhi-110 032 ## **National Reference Trace Organics Laboratory (NRTOL)** Requisition for Analysis of Environmental Samples for Polychlorinated dibenzo-p-dioxin (PCDD) & Polychlorinated dibenzo furan (PCDF) Congeners on High Resolution Gas Chromatograph – High Resolution Mass Spectrometer (HRGC-HRMS) | 1. | Orgar
Divisi | nisation / Institut
on | ion / | : | | | | |----------------------------|---|---|--|--|--|--------------------------|--| | 2. | Proje | ct | | : | | | | | 3. Sampling location | | : | | | | | | | 4. Sample/s collected by | | : | | | | | | | 5. Date & time of sampling | | : | | | | | | | 6. | Samp
(i) | le details
Sample matrix | | : | | | | | | (ii) | Sample code n | o./nos. | | | | | | | (iii) | Total no. of sa | • | | | | | | | ` , | | • | | | | | | | (iv) | Sample preser condition | vation | : | | | | | 7. | Repor | t to be sent to | | : | | | | | | | | | | | | | | Con | geners | (Chlorine subs | stituted at | positions | & Polychlorinate 2,3,7,8) to be ana | | | | Con | geners
chlorina | (Chlorine subs | stituted at properties of the state s | positions
Ds) | 2,3,7,8) to be ana | ilyzed (Pl er | ncircle): | | Con | geners
chlorina
2378 | s (Chlorine subs
ated dibenzo-p-d
B TeCDD | ioxins (PCE | Dositions Dos) B PeCDD | 123478 Hx | olyzed (Pl er | | | Poly | geners
chlorina
2378
12378 | (Chlorine subs | ioxins (PCE
12378
123467 | positions
DDs)
B PeCDD
78 HpCDD | 2,3,7,8) to be ana | olyzed (Pl er | ncircle): | | Poly | geners
chlorina
2378
12378
chlorina
2378 | ated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF | ioxins (PCE
12378
123467
123467
ans (PCDFs | positions
DDs)
B PeCDD
78 HpCDD
)
B PeCDF | 123478 Hx0
12346789 O | CDD CDD | 123678 HxCDD
 | | Poly | chlorina
2378
12378
chlorina
2378
12367 | s (Chlorine subs
ated dibenzo-p-d
B TeCDD
B9 HxCDD
ated dibenzo fura
B TeCDF
78 HxCDF | ioxins (PCE
12378
123467
123467
12378
12378 | positions DDs) B PeCDD B HpCDD B PeCDF B PeCDF B HxCDF | 123478 Hx(
12346789 O | CDD CDD | 123678 HxCDD | | Poly | chlorina
2378
12378
chlorina
2378
12367
12347 | s (Chlorine subs
ated dibenzo-p-d
B TeCDD
B9 HxCDD
ated dibenzo fura
B TeCDF
78 HxCDF
89 HpCDF | ioxins (PCE
12378
123467
123467
12378
12378
123467 | Positions DDs) B PeCDD R HpCDD B PeCDF HxCDF R HyCDF R HyCDF | 123478 Hx(
12346789 O
23478 PeC
234678 Hx(| CDD CDF | 123678 HxCDD
 | | Poly | chlorina
2378
12378
chlorina
2378
12367
12347 | s (Chlorine subs
ated dibenzo-p-d
B TeCDD
B9 HxCDD
ated dibenzo fura
B TeCDF
78 HxCDF
89 HpCDF | ioxins (PCE
12378
123467
123467
12378
12378
123467 | Positions DDs) B PeCDD R HpCDD B PeCDF HxCDF R HyCDF R HyCDF | 123478 Hx0
12346789 O | CDD CDF | 123678 HxCDD
 | | Poly Poly Tota | chlorina
2378
12378
chlorina
2378
12367
12347 | ated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF 78 HxCDF 89 HpCDF Inde | ioxins (PCE
12378
123467
123467
12378
12378
123467 | positions DDs) B PeCDD B PeCDD B PeCDF B PeCDF B PeCDF B HXCDF B (PCDDs) e sion | 2,3,7,8) to be and 123478 Hx(12346789 O 23478 PeC 234678 Hx(- & Polychlorinated Incharge NRTOL | CDD CDF CDF dibenzo fura | 123678 HxCDD
 | | Poly Poly Tota | geners chlorina 2378 12378 chlorina 2378 12367 12347 I Polycl | ated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF 78 HxCDF 89 HpCDF Inde | ioxins (PCE
12378
123467
123467
12378
12378
12378
123467
20-p-dioxins | positions DDs) B PeCDD B PeCDD B PeCDF | 2,3,7,8) to be and 123478 Hx(12346789 O 23478 PeC 234678 Hx(- & Polychlorinated Incharge NRTOL | CDD CDF CDF CDF Samp | 123678 HxCDD 123478 HxCDF 1234678 HpCDF Ins (PCDFs) Incharge le Rcvg Section | | Poly Poly Tota | chlorina
2378
12378
chlorina
2378
12367
12347
I Polycl | ated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF 78 HxCDF 89 HpCDF Inde | ioxins (PCE
12378
123467
ans (PCDFs
12378
12378
123467
co-p-dioxins
Incharganting Divis | Positions DDs) B PeCDD R8 HpCDD B PeCDF 9 HxCDF R89 OCDF G (PCDDs) e sion ACKNOWLI | 123478 Hx(12346789 C) 23478 PeC 234678 Hx(| CDD CDF CDF CDF Samp | 123678 HxCDD 123478 HxCDF 1234678 HpCDF Ins (PCDFs) Incharge le Rcvg Section | | Poly Tota Inde | chlorina
2378
12378
chlorina
2378
12367
12347
I Polycl | s (Chlorine substated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF 78 HxCDF 89 HpCDF Inde | ioxins (PCE
12378
123467
123467
12378
12378
12378
123467
20-p-dioxins
Inchargenting Division | Positions DDs) B PeCDD B PeCDD B PeCDF | 123478 Hx0 12346789 O 23478 PeO 234678 Hx0 234678 Hx0 | CDD CDF CDF CDF Samp | 123678 HxCDD 123478 HxCDF 1234678 HpCDF Ins (PCDFs) Incharge le Rcvg Section a.m./p.m. | | Poly Tota Inde | chlorina
2378
12378
chlorina
2378
12367
12347
I Polycl | s (Chlorine substated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF 78 HxCDF 89 HpCDF Inde | ioxins (PCE
12378
123467
123467
12378
12378
12378
123467
20-p-dioxins
Inchargenting Division | Positions DDs) B PeCDD B PeCDD B PeCDF | 123478 Hx(12346789 C) 23478 PeC 234678 Hx(| CDD CDF CDF CDF Samp | 123678 HxCDD 123478 HxCDF 1234678 HpCDF Ins (PCDFs) Incharge le Rcvg Section a.m./p.m. | | Poly Tota Inde | chlorina
2378
12378
chlorina
2378
12367
12347
I Polycl | s (Chlorine substated dibenzo-p-d B TeCDD B9 HxCDD ated dibenzo fura B TeCDF 78 HxCDF 89 HpCDF Inde | ioxins (PCE
12378
123467
123467
12378
12378
12378
123467
20-p-dioxins
Inchargenting Division | Positions DDs) B PeCDD B PeCDD B PeCDF | 123478 Hx0 12346789 O 23478 PeO 234678 Hx0 234678 Hx0 | CDD CDF CDF CDF Samp | 123678 HxCDD 123478 HxCDF 1234678 HpCDF Ins (PCDFs) Incharge le Rcvg Section a.m./p.m. | ### Sampling Protocol to be followed: ### **Ground Water / Surface Water** One litre ground water / surface water sample to be collected from the sampling location in Amber Colored one litre glass bottle having glass stopper or screw cap with Teflon lined septa. The sample should be duly coded, labelled and ice preserved immediately and transported in Ice box in ice preserved condition. #### **Waste Water** One litre wastewater sample avoiding any visible floating matter to be collected from the sampling location in Amber colored one litre glass bottle having glass stopper or screw cap with Teflon lined septa. The sample should be duly coded / labelled and ice preserved immediately and transported in ice box in ice preserved condition. #### Soil / Sediment / Solid Waste / Hazardous Waste Several Aliquots of soil / sediment / solid waste / hazardous waste to be collected from the sampling area. These Aliquots should be mixed together. Out of the mixture, approx. 500 g sample to be taken into Polypropylene Zip pouch, duly coded, labelled and ice preserved immediately and transported in ice box in ice preserved condition.