

FINAL ACTION PLAN REPORT FOR CRITICALLY POLLUTED AREA KURICHI INDUSTRIAL CLUSTER, COIMBATORE NOVEMBER 2010

<u>INDEX</u>

	DESCRIPTION	Pg.No.
	RODUCTION	
1.1	Area Details including Brief History	1
1.2	Location	1
1.3	Digitized Map with Demarcation of Geographical	5
	Boundaries and Impact Zones	
1.4	CEPI Score (Air, Water, Land and Total)	5
1.5	Total Population and sensitive receptors	8
1.6	Eco-Geological Features	10
1.7	Industry Classification and Distribution	10
2.0 W	ATER ENVIRONMENT	
2.1	Present Status of Water Environment supported with	18
	minimum one year analytical data	
2.2	Sources of Water Pollution	21
2.3	Details of Water Polluting industries in the area/cluster	22
2.4	Effluent disposal methods – Recipient water bodies, etc	24
2.5	Quantification of waste water pollution load and relative	24
2.0	contribution by different sources viz industrial/ domestic	
2.6	Action Plan for compliance and control of pollution	25
3.0 A	IR ENVIRONMENT	
3.1	Present Status of Air environment (supported with minimum one year analytical data)	33
3.2	Sources of air pollution	43
3.3	Air Polluting industries in the area/cluster	43
3.4	Impact of Activities of nearby area on the CEPI area	44
3.5	Quantification of air pollution load and relative contribution by different sources	45
3.6	Action Plan for compliance and control of Pollution	45
	ACTION Plan for compliance and control of Politicity	40
4.0 L/	Soil Contamination	62
4.2	Ground Water Contamination	62
4.3	Solid Waste Generation and Management	62
	PP MODEL	02
	Identification of project proposals for implementation in the	69
5.1	PPP mode under the action plan	00
	Identification of stake holders/ agencies to be involved and	69
5.2	to evolve financial and managerial mechanisms for	
	implementation of PPP project.	
6.0 O	THER INFRASTRUCTURAL MEASURES	
6.1	Green Belt	69
6.2	Development of Industrial Estate	70
	PECIFIC SCHEMES	
7.1	GIS-GPS SYSTEMS FOR Pollution Sources Monitoring	70
7.2	Co-Processing of waste in Cement Industries	70

IBLIC AWARNESS AND TRAINING PROGRAMMES	70			
9.0 OVERALL IMPACT OF INSTALLATION/ COMMISSIONING				
POLLUTION CONTROL EQUIPMENTS/ MEASURES				
NTHE CEPI SCORE				
Water Environment	70			
Air Environment	71			
Land Environment	71			
SSESSEMENT OF TECHNO ECONOMICAL FEASABILITY	72			
F POLLUTION CONTROL SYSTEMS IN CLUSTERS OF				
IALL AND MEDIUM SCALE INDUSTRIES				
11.0 EFFORTS SHALL BE MADE TO ENCOURAGE USE OF BIO				
COMPOST AND BIO-FERTILIZER ALONG WITH THE CHEMICAL				
FERTILIZER IN THE STATE TO MINIMIZE THE UNUTILIZED				
CHEMICAL FERTILIZER RUN-OFF INTO THE NATURAL WATER				
SOURCES FROM AGRICULTUREFIELDS(through				
vt.Policy)				
IMARY OF PROPOSED ACTION POINTS				
Short term action plan(within one year)	73			
12.2 Longterm action plan (more than one year)				
13.0 CEPI AS PER CURRENT STATUS				
CEPI Calculation for Kurichi Industrial cluster, Coimbatore,	78			
Tamilnadu				
Conclusions	82			
	POLLUTION CONTROL EQUIPMENTS/ MEASURES THE CEPI SCORE Water Environment Air Environment Land Environment SSESSEMENT OF TECHNO ECONOMICAL FEASABILITY POLLUTION CONTROL SYSTEMS IN CLUSTERS OF MALL AND MEDIUM SCALE INDUSTRIES FORTS SHALL BE MADE TO ENCOURAGE USE OF BIO MPOST AND BIO-FERTILIZER ALONG WITH THE CHEMICAL RTILIZER IN THE STATE TO MINIMIZE THE UNUTILIZED EMICAL FERTILIZER RUN-OFF INTO THE NATURAL WATER URCES FROM AGRICULTUREFIELDS(through vt.Policy) MMARY OF PROPOSED ACTION POINTS Short term action plan(within one year) Longterm action plan (more than one year) EPI AS PER CURRENT STATUS CEPI Calculation for Kurichi Industrial cluster, Coimbatore, Tamilnadu			

ACTION PLAN FOR KURICHI INDUSTRIAL CLUSTER

1.0 INTRODUCTION

1.1 Area Details including brief history (background information)

Coimbatore District is located in the western part of Tamil Nadu. The District is spread out in an area of 7469 sq.km. The average annual rainfall in the plan is around 700 mm. This District has two Revenue Division, Coimbatore and Pollachi. The District comprises of six taluks namely Coimbatore North, Coimbatore South, Pollachi, Valparai, Mettupalayam and Sulur. The Coimbatore City comes under Corporation administration. Coimbatore is the second largest city in Tamil Nadu. The city is located at 411 meters above mean sea level. Average rainfall is about 612.2 Millimeters. The city is situated on the banks of the River Noyyal. It has population of more than 16 lakhs. The city is also known as Manchester of South India. The city is famous for textile spinning mills, wet grinders, pumps and motors industry sector. To cater the needs of above and to fabricate machineries for the factories, foundry and electroplating sector establishments are emerging.

Kurichi Industrial cluster is located at a distance of 7 km from Coimbatore city. This cluster has two industrial estates developed by SIDCO & private to an extent of 180-acres.

1.2 Location

In Coimbatore District, Kurichi is located at $10^{\circ}55'11$ " N latitude and $76^{\circ}57'35$ "E longitude comprising of Industrial Cluster. This Industrial cluster is located at distance of 7 km from Coimbatore Corporation. In Kurichi two Industrial estates exist which are developed by SIDCO and Private. Adjoining to this estate Tamilnadu Housing Board has constructed Housing units. This Industrial cluster area spreads over an area of about 180 acres. This cluster comes under the administrative jurisdiction of Kurichi Municipality. This industrial cluster is located on the NH from Coimbatore to Pollachi. The map showing the location of SIDCO industrial cluster in the Coimbatore district map is given in **Figure – 1.1**.

INDEX PLAN

INDEX PLAN

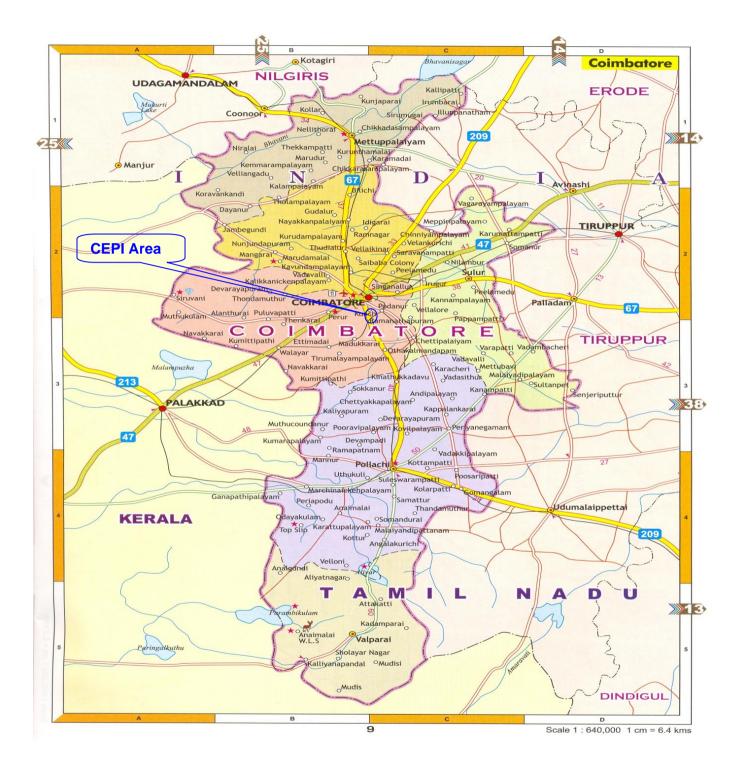


FIGURE – 1.1 LOCATION OF SIDCO INDUSTRIAL CLUSTER IN COIMBATORE DISTRICT

1.3 Digitized Map with Demarcation of Geographical Boundaries and Impact Zones

The CEPI area is surrounded by Kurichi Housing unit Phase-1 & 2 in west and SW direction, scattered engineering industries, commercial establishments and residential houses in north direction, residential houses of Ganeshapuram in east direction, scattered industries, educational institutions and software park in south direction. The digitized map showing the boundaries of the CEPI area is shown in **Figure – 1.2**. The map showing the impact zone of 2.0 km radius around the CEPI area is shown in **Figure – 1.3**.

1.4 CEPI Score (Air, Water, Land and Total)

Central Pollution Control Board has developed a Comprehensive Environmental Pollution Index (CEPI) based on pollution potential of the industries located in industrial estates in our country. As an outcome of this study Kurichi Industrial Cluster in Coimbatore district has been identified as one of critically polluted area with CEPI score of 72.38. Ministry of Environment and Forest, Govt. of India wide memorandum dated 13.1.2010 has declared Industrial Cluster of Kurichi, Coimbatore district as critically polluted area.

No	Industrial Area/clusters	Air	Water	Land	CEPI	
34	Kurichi Industrial Cluster,	62.25	58.75	45.50	72.38	Ac_Ws_Ln*
	Coimbatore (Tamilnadu)					

* Ac-Air Critical; Ws-Water Severe; Ln-Land Normal

The CPCB has instructed to prepare an action for improving the environmental quality of this said area vide their letter dt: 18.05.2010.

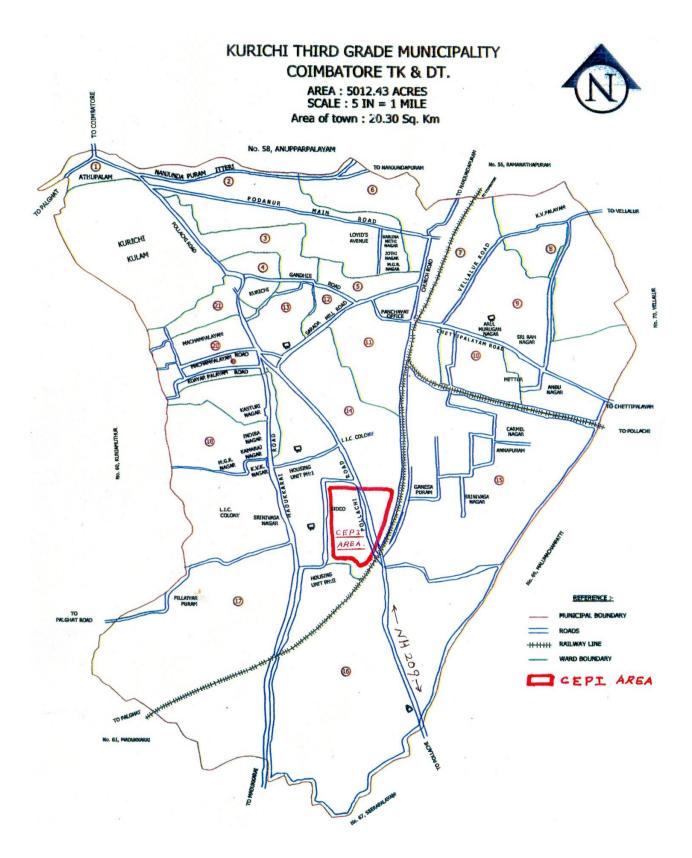
FIGURE – 1.2 MAP SHOWING THE BOUNDARIES OF THE CEPI AREA

FIGURE – 1.3 MAP SHOWING THE IMPACT ZONE OF 2.0 KM RADIUS AROUND THE CEPI AREA

1.5 Total population and sensitive receptors

Total Population of Kurichi is 76,794 as per 2001 censes. There are no critical sensitive receptors like hospitals, educational institutions, courts in the CEPI area. But there are certain sensitive receptors like hospitals, educational institutions, are exist in the impact zone of 2.0 km radius. The list of hospitals existing in 2 km radius around the CEPI area is given below:

- 1. N.R.P. Hospital, Sundarapuram
- 2. Sri Balaji Hospital, Sundarapuram
- 3. Abirami Hospital, Sundarapuram
- 4. Abinand Hospital, Sundarapuram
- 5. G.S. Hospital, Sundarapuram
- 6. Ganapathi Poly Clinic, Sundarapuram
- 7. St Mary's Hospital, Podanur
- 8. Koushikha Hospital, Podanur
- 9. S.M. Clinic, Podanur


The list of educational institutions existing with in 2 KM from the boundary of the CEPI area is given below:

- 1. Rathinam College of Arts & Science, Eachanari
- 2. Meenakshi Nursing College
- 3. KPM School, Eachanari

Other than above government primary schools are exists in Sundarapuram, Podanur, Kurichi, Idayarpalayam, Eachanri and Ganeshapuram. But there is no courts exist in the impact zone of 2.0 m radius.

DEMOGRAPHIC DETAILS IN 2 KM BUFFER ZONE:

The industrial cluster and its 2 Km Buffer Zone is located in Kurichi Village only. The population of entire Kurichi Village is 76,794 as per 2001 Census. Kurichi Municipality drawing showing road networks is given below.

1.6 Eco-geological features

1.6.1 Major Water Bodies (River, Lakes, Ponds, etc)

There is no water body exist within the CEPI area as well as impact zone of 2 km radius from the center of the cluster. The nearest river is Noyyal River located at 3.0 KM in North direction and nearest water body is Kurichi Lake located at 2.5 KM in NW direction from the Industrial Estate.

1.6.2 Ecological parks, sanctuaries or any eco sensitive zones

There is no ecological park, sanctuaries or any eco sensitive zones exists within the CEPI area or 2 KM impact zone. The flora existing within the impact zone is man made plants located around industries and domestic area. The fauna presents with in the impact zone of 2 KM are very few numbers of domestic animals which are also maintained by the residents in the impact zone of 2.0 KM. There is no record for presence of any endangered plants or animals within the impact zone.

1.6.3 Buildings or monuments of Historical / archaeological / religious importance

The SIDCO industrial cluster and its buffer zone of 2.0 KM radius did not accommodate any buildings or monument of historical, archaeological importance. Eachanari Vinayagar temple is located at 1.7 KM in South direction and St. Mary's church, Podanur located at a distance of about 2.0 KM in NE direction are religious important places in the impact zone around SIDCO.

1.7 Industry classification and distribution

In Kurichi Industrial cluster about 286 industries are in operation exist. In this cluster most of the Industries are Engineering Industries with lathe drilling operation and few foundries are located. There is no major water consuming and trade effluent generating industry in this cluster.

1.7.1 Highly polluting industries (17 Categories)

In this cluster most of the Industries are Engineering Industries and few Foundries are located. There are no highly polluting industries (17 category Industry) in this cluster as well as in impact zone of 2.0 km around the industrial cluster.

1.7.1 Red Category industries (54 categories)

There are about 45 no of red category industries located within the industrial cluster. Details of the different type of industries located in the cluster area are given in **Table** – 1.1.

<u>Table – 1.1</u> <u>Details of the Red Category Industries</u>

SI.	Category of the industry	No of units
No.		
1	Asbestos and asbestos based industries	1
2	Ceramics / refractory	1
3	Foundries	22
4	Industry or process involving electroplating operations	1
5	Industry or process involving metal treatment or process such as pickling, paint stripping, heat treatment, phosphating or finishing and so on.	12
6	Lead re-processing and manufacturing including lead smelting	2
7	Paints and varnishes	2
8	Synthetic rubber excluding moulding	4
	Total	45

However as per the classification of TNPC Board 53 number of Red Category Industries is located in the CEPI area.

1.7.3 Orange and Green category industries

There are about 32 No of orange and 192 number of green category industries are exist in the SIDCO industrial cluster. They are mainly includes engineering, lathe, machining, forging, glass ball manufacturing, oil blending, paper products, pesticide formulation, plastic, powder coating, pulverizing, radiators, spinning mill and the Green Category Industries are mainly Engineering Industries with Lathe, drilling, etc.,

1.7.4 Grossly Polluting industries

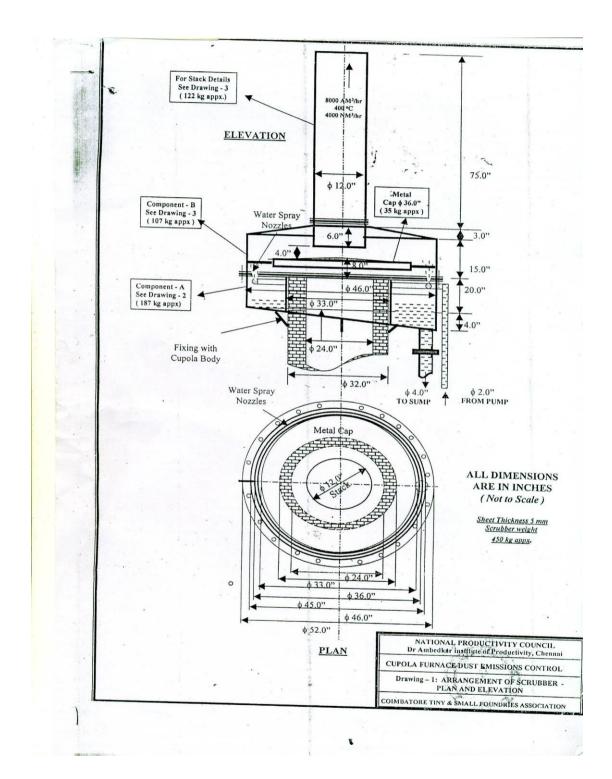
There is no grossly polluting Industries in the CEPI area.

1.7.5 DETAILS OF ALL FOUNDRIES IN COIMBATORE DISTRICT OFFICE:

There are about 448 foundry industries located in Coimbatore District. The Geographical spread of the cluster includes Thanneerpandal, Kalapatti, Ganapathy, Singanallur, Sarkarsamakulam and Karamadai area.

The clusters and the distance from the Kurichi Industrial area are furnished as follows.

Cluster name	Approximate Distance from Kurichi Industrial Estate in Km.
Singanallur	8
Ganapathy	12
Kalapatti	13
Peelamedu	10
Karamadai	30
Sarkarsamakulam	25


The classification of foundries is depicted as follows.

Investment	Nos	Type of Melting	Nos
Large Scale	28	Pit Furnace	20
Medium Scale	49	Induction Furnace	77
Small Scale	371	Cupola Furnace	351
Total	448	Total	448

The foundries located in the above clusters are mainly cupola furnaces producing Rough Cast Iron castings. Other foundries are having Induction and pit furnaces which are manufacturing non ferrous castings like Gun metal, Aluminium and steel castings.

AIR POLLUTION CONTROL MEASURES:

The cupola furnaces have installed mostly NPC model Wet scrubber as Air Pollution Control measures and few cupola furnaceshas provided conventional wet scrubbers to control air pollution. The Induction and pit furnaces have installed conventional wet scrubbers to control air pollution.

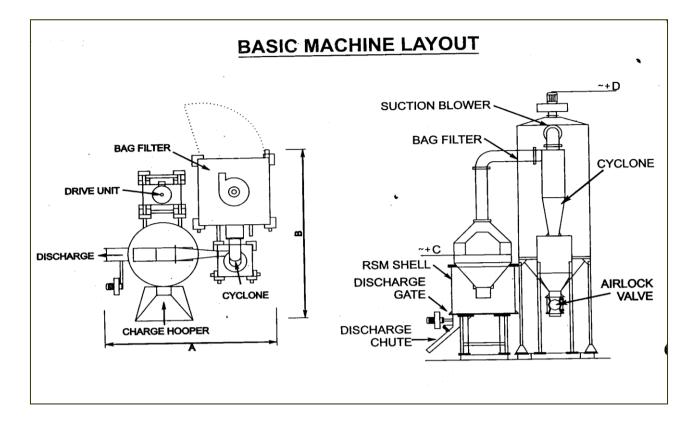
The Schematic diagram of NPC Model wet Scrubber is explained in the diagram

NPC MODEL SCRUBBER

CONVENTIONAL WET SCRUBBER

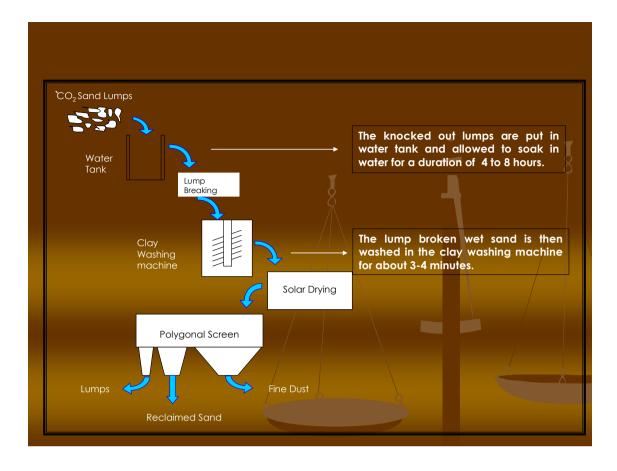
Since the clusters are far away from the Kurichi Industrial Estate the air pollution of the above clusters will not have much impact. There is also no cumulative effect due to these foundries to the CEPI areas.

Waste Sand Disposal


The foundries are using three type of sand moulding in their process like co $_2$ sand process, Green sand process and Resin sand process. Large and medium scale industries installed Thermal reclamation process for waste resin, sand, Wet/Dry type reclamation process for waste co $_2$ sand individually.

Type of Mould Preparation	Binder	Reclamation Method
Green Sand Method	Bentonite (clay)	Wet reclamation (with water) & Dry reclamation (solar drying)
Resin Method	Furfuryl alcohols	Thermal reclamation & Dry attrition
CO ₂ method	Sodium Silicate	 a) Wet process by soaking washing, solar drying & Sieving
		b) Dry process by dry attrition process

SAND RECLAMATION PROCESS


Dry sand reclamation

Dry sand reclamation relies on mechanical and pneumatic system to remove lumps and binders from sand. Mechanical system moves each sand grain through a sandto- metal or sand-to-sand interface to remove impurities. These system is removing binders in waste sand .Dry reclamation can produce large quantities of dust. The dust are collected through cyclones.

Wet reclamation:

Wet reclamation uses water to remove sand binders. The process uses on the different water solubilities of sand and binders to separate the two. Clay bonded systems work well with water reclamation processes because the clays are very soluble in water. Sodium silicate sand binders can also be removed using wet reclamation. The sodium silicate dissolves part of the sand crystal when binding, but can be removed by exposing it to water. After the sand is soaked in a water bath it is dried and reused.

Small scale foundries adopt green sand moulding process in which waste sand is reused for mould preparation. The Small scale foundries which uses the co ₂ sand process have proposed to provide common waste sand reclamation plant at Arasur Cluster at a cost of Rs.220 Lakhs in an area of two hectares. Total beneficiaries of this common system are hundred numbers. The proposal has been submitted to Government for availing subsidy.

FORMATION OF INDUSTRIAL ESTATE FOR FOUNDRIES:

Three clusters are emerging in Coimbatore District one at Manickampalayam, Annur Taluk in an area of 45 acres having 45 Nos of industries, another at Arasur, Palladam Taluk in an area of 110 Acres having 102 Nos of industries and another at Pallapalayam by COFIA, Palladam Taluk in an area of 27 Acres having 25 Nos of industries. The foundries in the Coimbatore city are slowly moving out of the city to the above cluster due to non availability of adequate land and also due to urbanization.

2.0 WATER ENVIRONMENT

2.1 Present status of water environment

In Kurchi Industrial cluster there are no remarkable water bodies. Noyyal River is running on the upstream side of the cluster at a distance of about 3 KM. Only a water tank named Kurichi Tank is located at a distance of about 2.5 KM on the upstream side of the SIDCO Industrial Cluster. Hence water samples are collected from Borewell and Open well in the cluster area.

The samples are analyzed for the following parameters like Conductivity, pH, TSS, TDS, Oil and grease, BOD, COD, Total Residual Chlorine, Ammoniacal Nitrogen, Total Keldahl Nitrogen, Free Ammonia, Nitrate, Sulphide, Fluoride, Cyanide, Phenolic compounds, Arsenic, Boron, Manganese, Iron Total, Total Chromium, Copper, Zinc, Lead, Cadmium, Nickel, Phosphate, Mercury, SAR, Hexa valent Chromium.

CONSOLIDATED STATEMENT OF ROA OF WATER SAMPLE COLLECTED FROM KURICHI INDUSTRIAL CLUSTER, COIMBATORE DISTRICT

<u>0</u>	OPEN WELL WATER INSIDE M/s.INDOSHELL MOULD LTD., UNIT-II				
SI. No.	Parameters	14.12.09	29.06.10	22.07.10	
1	Conductivity (micromhos/cm)	3300	2680	2600	
2	рН	7	7.18	7.77	
3	TSS	2	28	4	
4	Oil and Grease	<1	<1	<1	
5	BOD	<3	<2	<2	
6	COD	5	16	16	
7	Total Residual Chlorine	< 0.1	<1	< 1	
8	Ammoniacal Nitrogen	< 0.1	<5	<3.0	
9	Total Kjeldal Nitrogen (TKN)	< 0.1	<5	<5.0	
10	Free Ammonia	< 0.1	<3	<2.0	
11	Nitrate Nitrogen	0.9	1.987	15.36	
12	Sulphide	< 0.1	<1	<1	
13	Fluoride	0.8	<1	<1	
14	Cyanide	< 0.02	<0.005	<0.005	

15	Phenolic Compounds	< 0.001	<0.0005	<0.0005
16	Arsenic	< 0.01	<0.001	<0.001
17	Boron	0.02	<0.001	<0.001
18	Manganese	< 0.01	<0.014	<0.001
19	Iron Total	0.21	0.023	0.582
20	Total Chromium	< 0.01	<0.01	<0.01
21	Copper	< 0.01	0.724	<0.0015
22	Zinc	0.12	0.242	<0.0015
23	Lead	< 0.01	<0.015	<0.015
24	Cadmium	< 0.01	<0.0008	<0.0008
25	Nickel	< 0.01	<0.006	<0.006
26	Phosphate (dissolved)	< 0.1	0.039	<0.005
27	Mercury	< 0.001	<0.003	<0.003
28	SAR	0.2	4.34	1.21
29	Hexavalent Chromium	< 0.05	<0.01	<0.01

CONSOLIDATED STATEMENT OF CRITICALLY POLLUTED AREA, KURICHI INDUSTRIAL CLUSTER

	BORE WELL WATER INSIDE M/s.SURIYA INDUSTRIES,					
	62, SIDCO Estate, Kurichi					
SI.	Parameters	14.12.09	29.06.10	22.07.10		
No.		14.12.03	29.00.10	22.07.10		
1	Conductivity (micromhos/cm)	4117	2710	2720		
2	рН	7.2	6.94	7.69		
3	TSS	2	22	4		
4	Oil and Grease	< 1	<1	<1		
5	BOD	< 3	6	<2		
6	COD	15	16	16		
7	Total Residual Chlorin	< 0.1	<1	<1		
8	Ammoniacal Nitrogen	< 0.1	<5	<3.0		
9	Total Kjeldal Nitrogen	< 0.1	<5	6.2		
10	Free Ammonia	< 0.1	<3	<2.0		
11	Nitrate Nitrogen	0.4	26.96	53.52		
12	Sulphide	< 0.1	<1	<1		
13	Fluoride	0.7	<1	<1		

14	Cyanide	< 0.02	<0.005	<0.005
15	Phenolic Compounds	< 0.001	<0.0005	<0.0005
16	Arsenic	< 0.01	<0.001	<0.001
17	Boron	< 0.01	<0.001	<0.001
18	Manganese	< 0.01	<0.025	0.062
19	Iron Total	0.32	0.337	0.733
20	Total Chromium	< 0.01	<0.01	<0.01
21	Copper	< 0.01	0.672	0.408
22	Zinc	0.09	0.269	0.25
23	Lead	< 0.01	<0.015	0.068
24	Cadmium	< 0.01	<0.0008	0.051
25	Nickel	< 0.01	<0.019	0.064
26	Phosphate (dissolved)	< 0.1	0.011	<0.005
27	Mercury	< 0.001	<0.003	<0.003
28	SAR	0.49	2.67	0.471
29	Hexavalent Chromium	< 0.05	<0.01	<0.01

The results shows only Conductivity is in excess of standards. This may be due to geophysical statistics of underground surface. There is no major effluent generating industries in this cluster.

2.1.1 <u>Water bodies effluent receiving drains in the area important for water quality</u> <u>monitoring</u>

Water bodies such as Noyyal river and Kurichi tank are located on the upstream side of the SIDCO Industrial Cluster. There is no discharge of effluent in this industrial cluster and there is no possibility of effluent reaching the water bodies. Hence it is inevitable to monitor the water quality through collecting ground water samples in Open / Borewell. One open well and Bore well located in M/s. Indoshell Mould Limited, Unit-II and M/s. Surya Industries respectively are selected for monitoring purpose.

2.1.2 <u>Present levels of Pollutant in water bodies effluent receiving drains/ground</u> water (Routine parameter, special parameters and water toxic relevant to the area in three categories known carcinogens, probable carcinogens and other toxics)

The ground water samples collected in the Bore & Open well is tabulated as follows. TDS is exceeding the standards. All other parameters are within the limits for drinking purpose. There are no carcinogens and other toxics present in the water.

2.1.3 <u>Predominant Sources contributing to various pollutants</u>

In the SIDCO Industrial cluster there is no water polluting industry or major effluent generating unit. Most of the units are foundry, engineering industries which generate very meager quantity of effluent from scrubber bleed off which is not discharged into ground but solar evaporated. Only few surface coating units are existing which make the effluent from its process. Main source of water pollution is arising from domestic usage by employees.

2.2 Sources of Water Pollution

2.2.1 Industrial

In the industrial cluster large numbers of industries are engineering and foundry sectors. There is no trade effluent generation except from scrubber which is solar evaporated. Few surface coating units are functioning in the cluster namely

- 1. Janatics India Private Limited
- 2. VXL Ring Travelers Private Limited
- 3. Metallurgical Engineering Industries
- 4. Venus Finishers
- 5. Vijayeswari Ring Travelers Private Limited
- 6. Vijay Electroplating Works
- 7. Alumex
- 8. Ramson Color Coaters
- 9. Vignesh Metal Process

These nine units are functioning with very less quantity of effluent. Two industries have provided RO Plant so as to achieve zero discharge.

2.2.2 Domestic

In the industrial cluster, industries are most probably man power oriented. Approximately 10,000 employees are working. The domestic sewage is the major concern in the water pollution. About 5 lakh liters of sewage are being generated which is presently treated in septic tank which is not adequate.

2.2.3 Others (Agricultural run off, leachate from MSW dump, illegal dumpsite etc.)

There is no agricultural activity in the above industrial cluster. Hence agricultural run off is ruled out. The municipal solid waste is collected by Kurchi municipality in the above cluster and disposed through compositing. There is no illegal solid waste disposal in the cluster area.

2.2.4 <u>Impact on surrounding area (Outside the CEPI Area) on the water</u> <u>sources/drainage system of the area under consideration</u>

In the cluster there are only nine surface coating units generate trade effluent. This is treated in effluent treatment plant and disposed through gardening/Solar evaporation pan. The solid waste sand is reclaimed to maximum extent and re used. There is no dumping of waste sand in the water bodies. The industrial cluster is surrounded by residents. The drainage from this habitation may also affect the quality of ground water.

2.3 Details of water polluting Industries in Area/Cluster

Only few surface coating units which generate trade effluent from phosphating are only water polluting industries in the cluster. The details of the units are furnished as follows.

SI. No	Name & Address	Production Qty	Effluent generation
1	Janatics India Private Limited,	1,Pneumatic cylinder –	2.2 KL/Week
	E-25, SIDCO Industrial	25000Nos/M	
	Estate, Kurichi, Cbe.	2,Pneumatic Valves – 50000	
		Nos/M	
		3,Solenoid Valves –	
		30000Nos/M	
		4,Pneumatic systems –	
		1000Nos/M	
		5,Pneumatic Oil Pump –	
		1250Nos/M	
		6,Pneumatic fittings –	
		400000Nos/M	
		FRL Filters – 50000 Nos/M	
2	VXL Ring Travelers Private	1, Ring Travelers – 2400Kgs/M	2.55 KLD
	Limited, 22, SIDCO Industrial	2,Rings – 3000Kgs/M	
	Estate, Kurichi,Cbe.		
3	Metallurgical Engineering	Hardened Ferrous	0.100 KLD
	Industries, C-3 Private	Components – 60T/M	
	industrial Estate Kurichi, Cbe.		
4	Venus Finishers, Site no	Blackening of M.S	0.05 KLD
	7B,Private Industrial Estate	Components – 250Kgs/day	
	,Kurichi ,Cbe .		
5	Vijayeswari Ring Travelers	Ring Travelers -0.4T/M	0.200KLD
	Private Limited , A-5, Private		
	Industrial Estate,		
	Kurichi ,Cbe.		
6	Vijay Electroplating Works,	Zinc & Nickel Plating –	0.125 KLD
	E- 79B,Sidco Industrial	300M ² /M	
	Estate, Cbe.		
7	Alumex ,64,SIDCO Industrial	1. Aluminium Anodizing –	0.66KLD
	Estate Kurichi ,Cbe.	100M ² /M	
		2. Aluminium Chromating –	
		75M ² /M	

8	Ramson Color Coaters, E-	Powder coated ferrous	0.750KL/15days
	37,SIDCO Industrial Estate	components 3000sqm/M	
	Kurichi , Cbe.		
9	Vignesh Metal Process	Finished web castings – 30T/M	1 KL/Month
	74,SIDCO Industrial Estate	Finished S.S castings – 20T/M	
	,Kurichi ,Cbe	Heat Treatment components –	
		30T/M	

2.4 Effluent disposal methods - Recipient water bodies etc.

The foundries which generate effluent from scrubber are disposed through solar evaporation pan. In the nine surface finishing two units have installed RO Plant to achieve zero discharge and remaining units are treating the treated effluent and dispose the same without affecting the environment.

The details of disposal method is furnished as follows

SL.	Name & Address	Final disposal of effluent
No		
1	Janatics India Private Limited , E-25 , SIDCO	Zero discharge
	Industrial Estate , Kurichi , Cbe.	
2	VXL Ring Travelers Private Limited , 22,SIDCO	Zero discharge
	Industrial Estate , Kurichi ,Cbe.	
3	Metallurgical Engineering Industries, C-3 Private	Solar Evaporation Pan
	industrial Estate Kurichi, Cbe.	
4	Venus Finishers, Site no 7B, Private Industrial	Solar evaporation pan .
	Estate ,Kurichi ,Cbe .	
5	Vijayeswari Ring Travelers Private Limited , A-	Solar evaporation pan .
	5, Private Industrial Estate,	
	Kurichi ,Cbe.	
6	Vijay Electroplating Works , E- 79B,Sidco	Solar evaporation pan
	Industrial Estate ,Cbe.	
7	Alumex ,64,SIDCO Industrial Estate Kurichi ,Cbe.	Solar evaporation pan
8	Ramson Color Coaters, E-37,SIDCO Industrial	Treated effluent is utilized for
	Estate Kurichi, Cbe.	gardening.

9	Vignesh	Metal	Process	74,SIDCO	Industrial	Solar Evaporation Pan
	Estate ,K	, urichi	Cbe			

There are no water bodies located on the down stream side of the cluster which receive the waste water from the cluster. Moreover there are no major waste generating units in the cluster

2.5 Quantification of waste water pollution load and relative contribution by difference sources viz industrial/domestic

There are no Major effluent generating industries is located in this industrial cluster. The domestic sewage generated from employees contributes to the organic load 500-KLD of sewage is generated

Organic load = <u>500KLD X 250 mg/l X1000</u> 1000 X 1000 = 125 kg of BOD

2.6 Action Plan for Compliance and Control of pollution

2.6.1 <u>Existing infra structure/facilities – water quality monitoring network, ETPs,</u> <u>CETPs, Sewage treatment plant of industry (STPs), surface drainage system,</u> <u>effluent conveyance channels/outfalls etc.</u>

There are no water bodies located in the cluster and also within impact zone of industrial cluster. Only a water tank named Kurichi tank is located on the upstream side of cluster at a distance of about 3 KM. Two ground water sample locations and surface water sample location on at kurchi tank and Noyyal river are identified and samples are collected once in three months. Samples are analyzed in the District Environmental lab and Advanced environmental laboratory, TNPCB. There is no CETP and STP in the cluster.

2.6.2 Pollution control measures installed by industries

There are nine surface coating industries generating trade effluent of 1 to 2 KLD Two medium scale units have provided RO Plant to achieve zero discharge. The details of the treatment system installed by industries is tabulated as follows

S. No	Name & address of	Quantity of	Details of	Disposal
	units	effluent	treatment system	
1	Janatics India Private	2.2 KL/Week	1, Collection Tank	Zero discharge
	Limited, E-25,		– 1 No	
	SIDCO Industrial		2,Settling Tank – 1	
	Estate, Kurichi,		No	
	Cbe.		3, Intermediate	
			storage tank – 1No	
			4,Dual Media Filter	
			– 1No	
			5,Activated carbon	
			filter – 1No	
			6,Micron Filter –	
			1No	
			7,RO Plant – 1No	
			8,RO Permeate	
			storage tank -1No	
			9,Sludge drying	
			bed – 1No	
			10,Solar	
			evaporation pan –	
			1No	
			11,RO reject tank –	
			1No	
2	VXL Ring Travelers	2.55 KLD	1,Collection tank –	Zero discharge
	Private Limited,		1 No	
	22,SIDCO Industrial		2,Settling tank –	
	Estate , Kurichi ,Cbe.		1No	
			3,Neutralization	
			tank cum settling	

[tank – 1No	[]
			4,Sand filter – 1No	
			5,Sludge drying	
			bed – 1 No	
			6,RO Plant –	
			100Lits/Hr Cap	
			7,RO Reject tank –	
			1No	
			8,Treated	
			collection sump	
3	Metallurgical	0.1 KLD	Solar Evaporation	Solar
	Engineering		pan – 1Nos	Evaporation
	Industries, C-3			Pan
	Private industrial			
	Estate Kurichi, Cbe.			
4	Venus Finishers ,	0.05 KLD	1,Collection cum	Solar
	Site no 7B,Private		Neutralization tank	evaporation
	Industrial Estate		– 1No	pan .
	,Kurichi ,Cbe .		2,Solar	
			evaporation pan –	
			1No	
5	Vijayeswari Ring	0.2 KLD	1,Reaction cum	Solar
	Travelers Private		settling tanks –	evaporation
	Limited , A-5, Private		2Nos	pan .
	Industrial Estate,		2, Solar	
	Kurichi ,Cbe.		evaporation pan –	
			1 No	
6	Vijay Electroplating	0.125 KLD	1,Collection cum	Solar
	Works , E- 79B,Sidco		Neutralization tank	evaporation
	Industrial Estate		– 2Nos	pan
	,Cbe.		2,Mixing cum	
			Settling tank – 1No	
			3, Sand filter – 1No	
			4, Sludge drying	
			bed – 2Nos	

			5,Solar	
			Evaporation Pan –	
			2Nos	
			21105	
7	Alumex ,64,SIDCO	0.66 KLD	1, Collection Tank	Solar
	Industrial Estate		cum Reduction	evaporation
	Kurichi ,Cbe.		Tank – 1No	pan
			2,Collection tank	
			cumj neutralization	
			tank -1No	
			3,Settling tank –	
			1No	
			4,sand Filter – 2No	
			5,Sludge drying	
			bed – 2Nos	
			6,solar Evaporation	
			Pan – 1No	
8	Ramson Color	0.75 KL/15	1,Collection Tank –	Treated effluent
	Coaters, E-	days	1No	is utilized for
	37,SIDCO Industrial		2,Reaction cum	gardening.
	Estate Kurichi, Cbe.		settling tank -	
			1Nos	
			3,Dosing tank –	
			2nos	
			4,Sand filter – 1No	
			Sludge drying bed	
			– 1No	
9	Vignesh Metal	1 KL/Month	1,Collection Cum	Solar
3	-		Neutralisation Tank	
				Evaporation
	Industrial Estate		– 1No	Pan
	,Kurichi ,Cbe		2,Solar	
			Evaporation Pan –	
			1No	

2.6.3 <u>Technological Intervention</u>

2.6.3.1 Inventorisation of prominent Industries with technological gaps

In the Industrial cluster seven micro scale surface coating units are functioning. Two medium scale units have already installed RO plant to achieve zero discharge. There are no technological gaps.

2.6.3.2 Identification of low cost and advanced clean technology for pollution control

Surface coating units are the effluent generating industries in this estate with very meager quantity of effluent. This is treated in collection cum reaction tank & settling tanks at the low cost and disposed through solar evaporation pan.

2.6.4 Infrastructure renewal

2.6.4.1 Details of existing infrastructural facilities

In the Industrial cluster bitumen roads are existing for transport. All industries are connected with water supply line from SIDCO. No common sewage collection & treatment facility is available. There is no proper lined drainage to collect rain water for final disposal

2.6.4.2 Need for up gradation of existing facility

Proper drainage facility should be provided to carry the run off. For final disposal entire stretch of storm water drainage shall be connected. Likewise no common treatment facility is available for sewage in this entire estate. At present sewage from industries are treated in septic tank and disposed through dispersion trench/soak pit which is inadequate. Hence, a common sewage treatment plant should be planned for collection, treatment & disposal of sewage. The treated sewage can be utilized for green belt development within the industrial cluster.

MEASURES FOR SEWAGE AND MUNICIPAL SOLID WASTE:

In this Industrial Cluster it is roughly estimated that all industries will generate 300 to 350 KL of Sewage per day and proposed to provide a STP with 500 KLD Capacity. Tamilnadu Small Industries Development Corporation has proposed to allot land for

the construction of STP. Coimbatore SIDCO Industrial Manufacturer's Association has proposed to construct the STP with Conventional Treatment system at a cost of Rs.146 Lakhs. The Association is approaching the State and Central Government through Industries Department for subsidy under Micro Small Entrepreneur combined Development – Industrial Infrastructure Development Scheme. The entire project for installation and commissioning of STP will take one year time.

2.6.4.3 De-Silting of waste tanks, drains, rivers etc.,

In the industrial cluster at kurchi there is no water bodies located nearby. There are no major effluent generation units except few surface coating units. The kurchi tank and Noyyal river are at the upstream side of the cluster. Hence there is no need for any desilting of water bodies.

2.6.4.4 Construction of lined drains/connections

Entire cluster is lack of lined drains. Only earthen drains exist. Hence no proper collection of run off is in practice. So proper lined storm water drain shall be made in entire cluster.

2.6.4.6 Rejuvenation/Management plan for important eco-geological features

There is no remarkable ecologically sensitive area near to the industrial cluster. Hence the management of the features does not arise.

2.6.4.7 Carrying of effluent from industrial units located is non industrial location to CETP facilities by lined drains/pipelines only and prevention of their disposal in to city sewerage/surface water drains.

There are no major waste water generating industries located within the cluster as well as around 2 KM radius of the industrial cluster.

2.6.4.8 Installation of Gen set at CETPs

There is no CETP in this cluster. Only common STP is proposed and separate proposal enables for installation of Gen set at the above site.

2.6.5 Managerial and Financial aspects

2.6.5.1 Cost and Time estimation

Two medium scale Industries have provided R.O.Plant and one large scale Industry located away from the cluster has proposed to provide STP.

SL. No.	Source	Industry	Target date	Cost	Remarks
1	Trade Effluent-RO	M/s. VXL Ring	30.07.2010	10	R.O. Completed ⁢ is in
	System	Travellers (P)			operation.
		Limited			
2	Trade Effluent-RO	M/s. Janatics	30.07.2010	5	RO Plant provided and it
	Plant	India			is in operation.
		Pvt.Limited			
3	Sewage – STP	M/s. Titan	30.09.2010	8	Order Placed.
		Paints &			STP will be completed
		Chemicals			before 30.09.2010
4	Sewage from	SIDCO &	30.09.2011	146	The Association is
	Industries -	COSIEMA			expecting 90% subsidy
	Common STP	(Association)			from the Government
					through SIDCO.

2.6.5.2 Identified Private / Public sector potential investors & their Contribution/Obligation

It is decided to install common sewage treatment plant to collect & treat & dispose the sewage generated from all industries located in SIDCO & Private industrial sectors. The capacity of the plant is 500 KLD. The project is to be implemented by industries association, & SIDCO.

2.6.5.3 Government Budgetary support requirements

Total Project cost for common STP is about Rs.146 Lakhs exclusive of conveyance system. The Industrial Association is expecting 90% subsidy from Government and

the member contribution is 10 % of their project cost. SIDCO has to prepare the project report for this scheme.

2.6.5.4 Hierarchical and structured managerial system for efficient implementation

Only common STP is to be provided for all the Industries in the cluster.

2.6.6 Self monitory system in industries (ETPs)

In surface coating units the RO plant with zero discharge have been provided along with flow meters and energy meters for the self monitoring. The remaining micro industries are discharging their effluents through Solar Evaporation Pan.

2.6.7 Data linkages to SPCB / CPCB (of monitoring devices)

There is no major effluent generating industries in this estate. Hence, there is no necessity of data linkage.

3.0 AIR ENVIRONMENT

3.1 Present status of Air Environment

National Ambient Air Quality Monitoring station is already functioning in this SIDCO Industrial Estate. The exact location of the station is "Top of the SIDCO Industrial Estate Office". The present air quality levels of the SIDCO industrial cluster from the year 2004 to July 2010 is furnished in **Table – 3.1** to **3.3** and shown **Figure – 3.2** to **3.5**.

3.1.1 Critical locations for air quality monitoring

The total area of the Kurichi Industrial cluster is about 180 acres only. National Ambient Air Quality Monitoring station is already functioning in the Top of the SIDCO Industrial Estate Office, which is located in the centre of the cluster. The location was already decided based on wind pattern, geographical locations of industries and functioning for the past six years. The map showing the location of the NAAQM station is given in **Figure -1.3**. This location may be considered as a critical location for this industrial cluster.

3.1.2 Present levels of pollutants in air

The NAAQM is covering only routine parameters like Total Suspended Particulate Matter (TSPM), Respirable Suspended Particulate Matter (RSPM), Sulphur Dioxide and Oxides of Nitrogen (NOx). The summary of the NAAQM results for the year 2004 to 2009 is given in the **Table – 3.1**. The summary of the results for the year 2008-09 and 2009-10 are given in **Table – 3.2** and **3.3** respectively. The trend graphs for individual parameters for the year 2009-10 are shown in **Figure - 3.2** to **3.5**. To know the current status of the air pollution in the industrial cluster two AAQ monitoring was conducted covering entire list of parameters mentioned in the NAAQS prescribed by the CPCB/ dated 18.11.2009. The result of the monitoring conducted during July 2010 is given in **Table - 3.4**.

TABLE – 3.1

SUMMARY OF NAAQM RESULTS (2004 – 2009)

STATUS OF AIR QUALITY IN TAMILNADU UNDER NATIONAL AIR QUALITY MONITORING PROGRAMME (NAMP) 2004-09 PERMISSIBLE LIMIT (24hrs)

SO₂ : 80 microgram/m³ NO_x : 80 microgram/m³ SPM : 360 microgram/m³ RSPM : 120 microgram/m³

Ambient Quality Trend

NAMP Station : Kurichi (SIDCO)

Station Code: 237

Category : Industrial

		/Ugm/m ³		NO _x /Ugm/m ³			TSPM /Ugm/m ³				RSPM [Ugm/m ³					
toring	Max	Min	Avg.	Pollution	Max	Min	Avg.	Pollution Category	Max	Min	Avg.	Pollution Category	Max	Min	Avg.	Pollution Category
38	28.7	<4.0	9.3	L	90.0	10.8	48.1	M	551.6	41.6	192.0	М	158.9	28.3	84.0	М
100	25.0	<4.0	10.2	L	69.3	30.8	47.3	M	381.6	44.7	161.4	L	160.2	25.3	73.0	М
95	25.8	<4.0	11.4	L	62.5	16.7	40.1	L	866.0	80.4	230.0	М	233.3	45.0	102.0	М
94	16.8	<4.0	5.9	L	54.7	11.7	31.0	L	417.0	52.0	212.0	М	261.0	32.0	110.0	М
95	13.5	<4.0	5.8	L	83.9	17.6	37.3	L	511.0	94.0	224.0	M	349.0	58.0	117.0	М
	Moni- toring days 38 100 95 94	Moni- toring days Max 38 28.7 100 25.0 95 25.8 94 16.8	Moni- toring days Max Min 38 28.7 <4.0	Moni- toring days Max Min Avg. 38 28.7 <4.0	Moni- toring days Max Min Avg. Category Pollution Category 38 28.7 <4.0	Moni- toring days Max Min Avg. Category Pollution Category Max Category 38 28.7 <4.0	Moni- toring days Max Min Avg. 28.7 Pollution Category Max Min 38 28.7 <4.0	Moni- toring days Max Min Avg. Pollution Category Max Min Avg. 38 28.7 <4.0	Moni- toring days Max Min Avg. Pollution Category Max Min Avg. Pollution Category 38 28.7 <4.0	Moni- toring days Max Min Avg. Category Pollution Category Max Min Avg. Category Pollution Category Max 38 28.7 <4.0	No. of Moni- toring daysSO2 $POgm/m$ Pogm/mHOX $POgm/m$ Pogm/mMax $Pogm/m$ Min $Pogm/m$ Avg. $Pogm/m$ Pollution $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Avg. $Pollution$ $Category$ Pollution Max Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Category$ Max $Pollution$ $Category$ Min $Pollution$ $Pollution$	No. of Moni- toring days SO ₂ Øgm/m No. of SO ₂ No. of Max Min Avg. Pollution Category Max Min Avg. days Max Min Avg. Pollution Category Max Min Avg. Pollution Category Max Min Avg. 38 28.7 <4.0	No. of Moni- toring days SO ₂ / Jgm/m SO ₂ / Jgm/m Image: SO	No. of Moni- toring days SO ₂ / Jgm/m No. of Max SO ₂ / Jgm/m No. of Max No. of Max No. of Max Min Avg. Category Pollution Category Max Min Avg. Category Pollution Category Max 38 28.7 <4.0	No. of Moni- toring days SO ₂ /Ugm/m ³ NO _x /Ugm/m ³	No. of Moni- toring days SO ₂ /Jgm/m ³ SO ₂ /Jgm/m ³ No. NO _x /Jgm/m ³ No. No. NO _x /Jgm/m ³ No.

Note:-SO₂ : Sulphur di oxide, NO_x : Oxides of nitrogen, RDP : Respirable dust particulate matter (<10micron size), TSPM : Total Suspended particulate matter, PC : Pollution category (L-Low, M-Medium, H-High, C-Critical)

Deputy Manager (Lab)SG District Environmental Laboratory, Coimbatore.

TABLE - 3.2

SUMMARY OF NAAQM RESULTS (APRIL 2008 - MARCH 2009)

STATUS OF AIR QUALITY IN TAMILNADU UNDER NATIONAL AIR QUALITY MONITORING PROGRAMME (NAMP)- 2008-09

PERMISSIBLE LIMIT (24hrs) SO₂ : 120 microgram/m³ NO_x : 120 microgram/m³ SPM : 500 microgram/m³ RSPM: 150 microgram/m³

Ambient Quality Trend

NAMP Station : SIDCO Station Code: 237

Category : Industrial

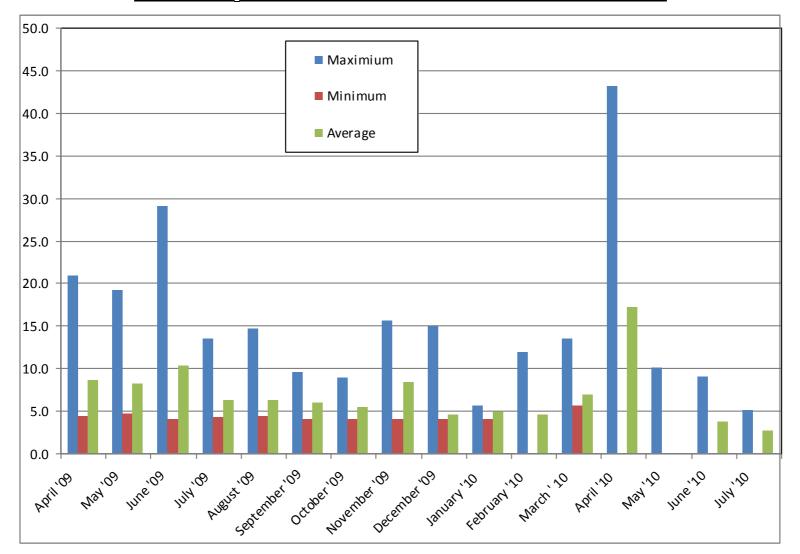
	No. of		SO ₂	/Ugm/m ³			NO _x	/Ugm/m ³			TSPM	/Ugm/m ³			RSPN	M Ugm/m ³	
Month & Year	Moni-	Max	Min	Avg.	Pollution	Max	Min	Avg.	Pollution	Max	Min	Avg.	Pollution	Max	Min	Avg.	Pollution
Month & Tear	toring days	Wida	IVIIII	11.6.	Category			Ũ	Category				Category				Category
April 2008	8	7.2	<4.0	4.9	L	31.7	17.6	25.3	L	346.0	146.0	203.0	L	177.0	83.0	121.0	M
May 2008	9	6.6	<4.0	5.4	L	33.8	22.4	27.2	L	319.0	161.0	212.0	L	190.0	72.0	119.0	M
June 2008	8	7.0	<4.0	5.4	L	31.1	19.0	26.4	L	301.0	94.0	153.0	L	134.0	58.0	85.0	M
July 2008	9	6.1	<4.0	5.0	L	54.4	19.2	29.9	L	244.0	121.0	174.0	L	136.0	74.0	97.0	M
August 2008	8	9.5	<4.0	5.5	L	83.9	25.4	46.2	L	246.0	133.0	197.0	L	133.0	77.0	99.0	M
September 08	8	9.2	<4.0	5.6	L	49.5	32.3	42.7	L	266.3	104.9	194.8	L	132.3	63.6	98.5	M
October 08	8	8.8	4.7	6.7	L	55.9	28.4	41.8	L	254.1	132.7	172.6	L	141.3	66.6	99.6	M
November 08	8	9.8	<4.0	5.6	L	54.8	26.1	34.9	L	337.3	144.6	249.0	L	183.0	84.0	132.0	M
December 08	7	13.5	5.5	6.9	L .	57.4	21.8	40.5	L	383	113.0	280.7	M	163.4	91	130	М
January 2009	7	8.3	5.8	6.9	L	73.1	26.9	49.4	L	511.0	199.0	332.0	M	349.0	78.0	193.0	H
February 2009	8	8.9	5.3	6.6	L	49.6	28.6	36.2	L	427.0	154.0	258.0	M	167.0	92.0	113.0	М
March 2009	7	11.9	<4.0	4.5	L	65.3	34.4	47.0	L	371.0	185.0	256.0	M	169.0	78.0	118.0	M
Total				5.8	L			37.3	L			224.0	M			117.0	M

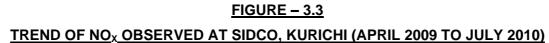
Note:-SO2 : Sulphur di oxide, NOx : Oxides of nitrogen, RDP : Respirable dust particulate matter (<10micron size), TSPM : Total Suspended particulate matter, 1813/10

PC : Pollution category (L-Low, M-Medium, H-High, C-Critical)

2-5 Deputy Manager (Lab)SG District Environmental Laboratory, Coimbatore. 14 NE USWELL'S

<u> TABLE – 3.3</u>

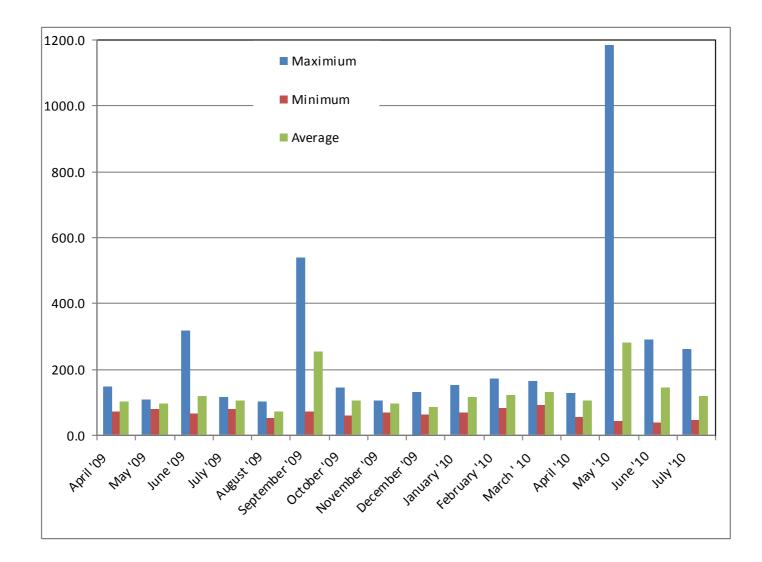

SUMMARY OF NAAQM RESULTS (APRIL 2009 – JULY 2010)

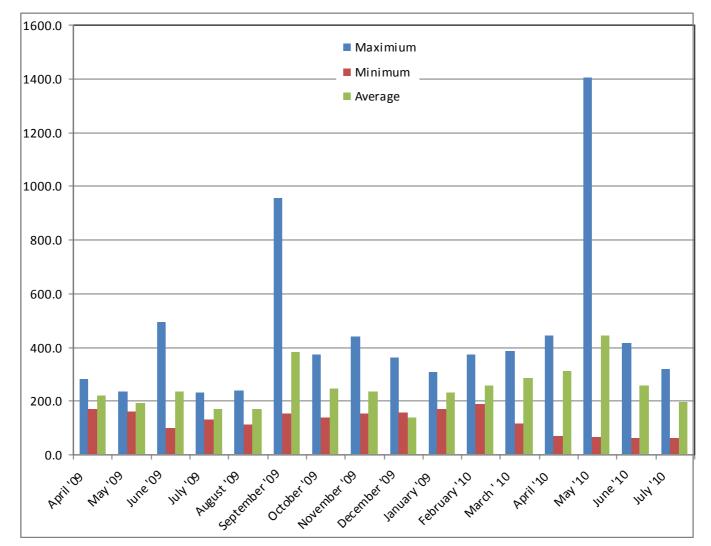

Parameter		So ₂			Nox			RSPM			SPM	
/ Month	Maximium	Minimum	Average	Maximium	Minimu m	Average	Maximium	Minimum	Average	Maximium	Minimum	Average
April '09	20.8	4.3	8.6	42.3	14.6	27.8	146.0	69.0	98.8	279.0	168.0	217.6
May '09	19.1	4.6	8.2	26.4	12.1	17.1	105.0	77.0	92.9	233.0	157.0	190.3
June '09	29.0	<4.0	10.2	36.8	13.6	21.3	316.0	62.6	116.3	489.0	98.0	232.2
July '09	13.5	4.2	6.2	62.7	13.9	30.0	112.3	77.3	101.9	227.0	126.0	167.2
August '09	14.7	4.3	6.2	31.8	19.9	26.4	98.0	51.0	71.2	235.0	109.0	166.4
September '09	9.5	<4.0	6.0	33.5	17.4	26.7	538.0	70.0	250.8	955.0	149.7	378.5
October '09	8.9	<4.0	5.5	46.3	13.6	25.0	143.0	58.0	101.8	370.0	137.0	244.8
November '09	15.6	<4.0	8.4	39.4	15.0	27.4	103.0	66.5	94.1	435.0	150.0	230.0
December '09	14.9	<4.0	4.6	41.8	17.9	21.1	129.0	59.7	81.5	358.0	156.0	135.4
January '10	5.6	<4.0	4.9	48.7	28.7	31.6	150.0	67.7	111.9	303.5	166.7	228.4
February '10	11.9	<4.0	4.5	65.3	34.4	47.2	169.0	78.0	118.0	371.0	185.0	256.0

March ' 10	13.5	5.5	6.9	57.4	21.8	40.5	163.4	91.0	130.0	383.0	113.0	280.7
April '10	43.2	<4.0	17.2	52.5	12.9	31.4	125.0	54.0	102.0	440.0	64.0	311.0
May '10	10.0	<4.0	<4.0	32.3	12.9	26.0	1184.0	40.0	280.0	1403.0	61.0	439.0
June '10	9.0	<4.0	3.7	34.5	12.9	25.3	290.0	38.0	141.0	414.0	59.0	256.0
July '10	5.0	<4.0	2.7	49.0	10.7	28.0	260.0	43.0	117.5	318.0	59.0	195.0

FIGURE - 3.2

TREND OF SO₂ OBSERVED AT SIDCO, KURICHI (APRIL 2009 TO JULY 2010)




<u>FIGURE – 3.4</u>

TREND OF RSPM OBSERVED AT SIDCO, KURICHI (APRIL 2009 TO JULY 2010)

<u>FIGURE – 3.5</u>

TREND OF SPM OBSERVED AT SIDCO, KURICHI (APRIL 2009 TO JULY 2010)

<u>TABLE – 3.4</u>

MONITORING RESULTS FOR THE LATEST PARAMETERS

DATE OF SURVEY - 23.07.2010 & 24.07.2010

		Results		
S. No.	Parameter	SW corner of the	Top of SIDCO	Standard*
		SIDCO	Office	
1	Sulphur Dioxide (SO ₂), µg/m ³	10.0	14.2	80
2	Nitrogen Dioxide (NO ₂), µg/m ³	15.9	23.6	80
3	Particulate Matter (Size Less than 10 μ m) or	121.8	185.4	100
	ΡM ₁₀ , μg/m ³			
4	Particulate Matter (Size Less than 2.5 µm) or	52.5	74.0	60
	PM _{2.5} , μg/m ³			
5	Ozone (O ₃), μg/m ³	14.3	17.8	100
6	Lead (Pb), μg/m ³	0.04	0.13	1.0
7	Carbon Monoxide (CO), mg/m ³	0.22	0.35	2.0
8	Ammonia (NH ₃), μg/m ³	9.8	21.4	400
9	Benzene (C ₆ H ₆), μg/m ³	Not detected	Not detected	5.0
10	Benzo (a) Pyrene (BaP) – Particulate phase	24.9	44.0	1.0
	only, ng/m ³			
11	Arsenic (As), ng/m ³	<1.0	<1.0	6.0
12	Nickel (Ni), ng/m ³	4.3	12.2	20.0

* National Ambient Air Quality Standards as per the CPCB Notification dated 18.11.2009 for Industrial, Residential, Rural and other area

3.1.3 Predominant sources contributing to various pollutants

In the industrial cluster the major air pollutant is Particulate Matter which is mainly from the foundries. The industrial cluster is located on both sides of NH - 209. Always there will be heavy movement of vehicle. This vehicle transportation will also contribute air quality in the cluster.

The sulphur dioxide, Oxides of Nitrogen and Carbon monoxide emissions will be generated by the cupola furnaces in foundries, oil fired furnaces in heat treatment unit, forging unit, lead recovery unit, engineering unit. SO_2 , NO_X and CO will also be generated by the usage of fuel for boilers and DG sets in different type of industries. The Carbon monoxide will also contributed by vehicle transport in the cluster as well as surrounding area.

The possible of lead emission will be from the lead recovery unit and vehicle transport. There is no specific source for ammonia, ozone, Arsenic, nickel, benzene and benzo (a) pyrene. However benzo(a) pyrene is found in automobile exhaust fumes (especially from diesel engines).

3.2 Sources of Air Pollution

In the SIDCO Industrial Estate the major air pollution sources are industries and automobile emissions. The domestic sources of the air pollution is very much insignificant when compare to the industrial sources. There are no major natural sources of air pollution in the vicinity of the industrial area as the surrounding of the estates are mostly covered with industrial and domestic buildings.

SIDCO Industrial cluster is located on both sides of National Highways 209 (Coimbatore to Dindigul). Always there will be more vehicular movement on this road. This vehicular movement will contribute to the air quality in the cluster area. Due to this there will be the presence of CO, SPM, lead benzene and benzo(a) pyrene in the air quality.

3.3 Air Pollution Industries in the Area / Cluster

In this industrial cluster the major air polluting industries are foundries only. Other than foundries there are asbestos sheet manufacturing industry, rubber, lead recovery and engineering industries are located in the industrial cluster which will contribute marginal quantity of air pollution. The list of air polluting industries located in the cluster is given in **Table – 3.5.**

S. No.	Name of the Industry	Size	Category
1	M/s. Auto Shell Casts Pvt. Ltd.,	Red/Large	Foundry
2	M/s. Auto Shell Perfect Moulder	Red/Large	Foundry
	Ltd.,		
3	M/s. Indo Shell Cast Pvt. Ltd.,	Red/Medium	Foundry
4	M/s.Everest Industries Ltd., Podanur	Red/Large	Asbestos Roofing
			Sheet Mfg. unit
5	M/s. Craftsman Automation Pvt.	Red/Medium	Foundry
	Ltd., Unit-II		
6	M/s.Unique Shell Mould (India) Pvt.	Red/Medium	Foundry
	Ltd., Unit-I		
7	M/s. Unique Shell Mould (India) Pvt.	Red/Medium	Foundry
	Ltd., Unit-II		
8	M/s.Indo Shell Mould Ltd., Unit-I	Red/Medium	Foundry
9	M/s.Indo Shell Mould Ltd., Unit-II	Red/Medium	Foundry
10	M/s. Sri Seethalakshmi Steel	Red/Medium	Foundry
	Castings Pvt. Ltd.,		
11	M/s.Jayashree Metal Casters (P)	Red/Medium	Foundry
	Ltd.,		
12	M/s. Titan Paints & Chemicals Ltd.,	Red/Large	Paint (Powder
			Coating Paint
			Mfg. unit)
13	M/s.KMR Metal Mart	Red/Small	Lead recovery
			from used
			batteries
14	M/s. Vignesh Metal & Alloys	Red/Medium	Foundry
15	M/s. Ferros Alloyes	Red/Medium	Foundry
16	M/s. Treads Direct Limited	Orange/Large	Tread Rubber

<u>TABLE – 3.5</u> LIST OF MAJOR INDUSTRIES IN INDUSTRIAL CLUSTER

3.4 Impact of activities of near by area on the CEPI Area

The CEPI area is surrounded by Kurichi Housing unit Phase-1 & 2 in west and SW direction, scattered engineering industries, commercial establishments and residential houses in north direction, residential houses of Ganeshapuram in east direction, scattered industries, educational institutions and software park. There is no significant impact due to the surrounding activities on the CEPI area.

The National Highway (NH-209) connecting Coimbatore and Dindigul is crossing the CEPI area. There will be more vehicular movement on this road which will contribute notable pollution load on the air quality of the CEPI area.

VEHICULAR POLLUTION CONTROL AND TRAFFIC MANAGEMENT

National Highways 209 is passing through this Industrial cluster. Due to the Railway level crossing nearer to the Industrial cluster frequently there is traffic congestion and this vehicular emission contributes to the air quality in the Industrial cluster. The National Highway Authority has started construction of overbridge over Railway line at a cost of Rs.13 Crores and expected to be completed within 12 months. After completion of this overbridge the traffic flow will be uniform without any congestion.

3.5 Quantification of the air pollution load and relative contribution by different sources

In the AAQ survey conducted on 23.07.2010 & 24.07.2010, it was found that the level of SPM (PM $_{2.5}$ & PM $_{10}$) exceeded the limits prescribed by TNPCB. This may be due to the influence of continuous vehicle movement and emission from industries.

The emission of Benzo(a) Pyrene is also found to be alarmingly in excess. This is due to the emission from the Automobile exhaust and from D.G sets used by the industries during power failure. Normally there is an announced power cut of three hours daily. During this time most of the industries are using D.G Sets with diesel as fuel which may also contribute to benzo a) pyrene in the air quality.

FUGITIVE EMISSIONS:

The sources of fugitive emission within the Industrial cluster are

- i) Within the Industry due to its operation
- ii) Emission due to traffic on the road.

All the major industries has been advised to improve the house keeping and also take steps to avoid fugitive emission from the industry operations. All the roads are metal road. Most of the roads are recently laid single tract with both sides of the road are of mud roads. During traffic movement off the road in mud road there is chances of fugitive emission. There is no proposal in near future to provide tar road to the entire width of the Road. The Association has been advised to give instruction to all Industries to drive the vehicle on the road only to the extent possible so as to avoid fugitive emission.

3.6 Action plan for compliance and control of pollution

All the industries in the industrial cluster has provided necessary air pollution control measures. In particular foundries have provided following APC measures.

S. No.	Source of Emission	APC measures provided
1	Induction Furnaces	Wet scrubber with stack
2	Cupola Furnaces	Wet scrubber as per NPC model
3	Shot blasting machine	Bag filter with stack

In addition to the above the foundries have proposed to improve the performance of Air Pollution Control Measures to meet the revised Ambient Air Quality Standards. The foundries has proposed to improve the existing Air Pollution Control measures by providing Dust Collector before the existing wet scrubber attached to Induction furnace to remove metal oxides so as to reduce the SPM level further. The foundries have proposed to provide waste sand Reclamation Plant (either individually or commonly). The action plan by the individual industries are detailed below :

1. AUTO SHELL CASTS PRIVATE LIMITED, COIMBATORE-641 021

S.	Emission	Control	Approx.	Duration	Action Plan For
No.	Source	Measures	cost Rs.		Further Improvements
		Provided			
1	Common	Common	6.5 Lakhs	Completed	Bag filter system is
	stack	stack with			installed before wet
	attached to	Wet			scrubber to improve
	induction	scrubber			the efficiency of APC
	furnace				measure
2	Shot	Dust	3.75 Lakhs	Completed	A wet settling
	blasting	collector			chamber is installed
	machine	alone			after existing bag filter
		present			arrangement to
					control the fine dust.
3	Sand	We are	7.35 Lakhs	Completed	Sand reclamation
	reclamation	using the			plant for Co ₂ sand is
	plant	waste sand			provided .
		as land fill			
		material			

2. AUTO SHELL PERFECT MOULDER LTD, COIMBATORE-641 021

S.	Emission	Control	Аррх.	Duration	Action plan for further
No	Source	Measures	Cost		improvement
		Provided			
1	Common	Common	5.65	Completed	Bag filter system is
	stack	stack with	Lakhs		installed before wet
	attached to	Wet scrubber			scrubber to improve
	induction				the efficiency of APC
	furnace				measure

2	Cupola	Scrubber unit	6.5 Lakhs	Completed	Individual wet
	furnace	alone present			scrubber (NPC
					Design) is provided
3	Shot blasting	Dust collector	3.65	Completed	A wet settling
		alone present	Lakhs		chamber is installed
					after existing bag
					filter arrangement to
					control the fine dust.
4	Sand	We are using	4.5 Corers	Under	Proposed to provide
	reclamation	the waste		Technical	Thermal Reclamation
	plant	sand as land		Discussion.	plant for resin sand.
		fill material			

3. INDO SHELL CAST PRIVATE LIMITED

S.	Emission	Control	Аррх.	Duration	Action plan for further
No.	Source	Measures	Cost		improvement
		Provided			
1	DG Set 285	Stack	2.0 Lakhs	Completed	Provided acoustic
	KVA				enclosures.

4. EVEREST INDUSTRIES LIMITED, PODANUR WORKS

S. No.	Action Plan	Аррх.	Duration	Remarks
		Cost		
1.	All internal roads to be concreted to	Estimate	30.09.2010	Laying of
	reduce fugitive dust due to vehicular	d cost –		concrete road is
	movement	1.2		under progress.
		Crores		
2.	To recycle the Sieve Acid Wash back	Estimate	Completed	Sieve washing
	to process	d cost –		water is
		1.0 Lakh		recycled in the
				process.
3.	To provide Electromagnetic Flow	Estimate	Completed	EMFM
	Meter at STP to estimate the treated	d cost –		provided.
	water quantity	1.0 Lakh		
4	Monitoring – Lab to facilitate counting	3.0 Lakhs	30.09.2010	Quatation
	of Asbestos fiber			Obtained.

5. CRAFTSMAN AUTOMATION PVT. LTD., UNIT - II

S.	Emission	Control	Аррх.	Duration	Action plan for further
No.	Source	Measures	Cost		improvement
		Provided			
1	Sand	We are using	14.0	30.10.201	Work is under progress
	reclamation	the waste	Lakhs	0	for installation of sand
	plant	sand as land			reclamation plant.
		fill material			

6. UNIQUE SHELL MOULD (INDIA) PRIVATE LIMITED, PLANT – I

S.	Emission	Control	Аррх.	Duration	Action plan for further	
No.	Source	Measures	Cost		improvement	
		Provided				
1	DG Set 160	Stack	2.0 Lakhs	Completed	Acoustic measures is	
	KVA				provided during July	
					2010.	

7. UNIQUE SHELL MOULD (INDIA) PRIVATE LIMITED- PLANT II

S.	Emission	Control	Аррх.	Duration	Action plan for further	
No.	Source	Measures	Cost		improvement	
		Provided				
1	DG Set 225	Stack	20.0	31.08.2010	One D.G set was	
	& 380 KVA		Lakhs		replaced with a new	
					one and acoustic	
					measures to other D.G	
					set will be completed	
					before 31.08.2010	

8. INDO SHELL MOULD LIMITED, PLANT - I

S.	Emission	Control	Аррх.	Duration	Action plan for further	
No.	Source	Measures	Cost		improvement	
		Provided				
1	Sand	We are using	90 Lakhs	31.12.2010	Quatations obtained	
	reclamation	the waste			.Technical discussion	
	plant	sand as land			is going on .	
		fill material				

9. INDO SHELL MOULD LIMITED, PLANT – II

S.	Emission	Control	Appx. Cost	Duration	Action plan for
No.	Source	Measures			further
		Provided			improvement
1	Common	Common	14.0 Lakhs	31.08.2010	Installation of Bag
	stack	stack with Wet			filter system is
	attached to	scrubber			under progress.
	induction				
	furnace				
2	Sand	We are using	90.0 Lakhs	31.12.2010	Quatations
	reclamation	the waste			obtained .Technical
	plant	sand as land			discussion is going
		fill material			on .

10. SRI SEETHALAKSHMI STEEL CASTINGS PRIVATE LIMITED

S.	Emission	Contro	ol	Appx. Cost	Duration	Action plar	n for further
No.	Source	Measures				impro	/ement
		Provided					
1	Induction	Stack	with	2.0 Lakhs	31.08.2010	Order plac	ed for Bag
	furnace	Wet scrubber				filter syster	m .
2	Sand plant	То	be	3.5 Lakhs	Completed	Cyclone	separator
		provided				has been p	provided.

11 .JAYASHREE METAL CASTERS PVT LTD

S.	Emission	Control	Appx. Cost	Duration	Action plan for further
No.	Source	Measures			improvement
		Provided			
1	Knock Out	To be	2.50 Lakhs	31.08.2010	Work is under
	Section	provided			progress.

12. TITAN PAINTS & CHEMICALS LTD.

S. No.	Description	Cost in Rs.	Duration	Remarks
1	STP Plant to be installed	8.0 Lakhs	30.09.2010	Orders placed,
				STP will be
				completed before
				30.09.2010.

13. <u>KMR METAL MART</u>

S. No.	Description	Cost in Rs.	Duration	Remarks
1	Braking section is to be	0.5 Lakhs	31.08.2010	Battery cutting
	mechanized.			machine is under
				installation.
2	House Keeping is to be	2.0 Lakhs	31.08.2010	Providing
	improved			impervious layer
				inside the unit is
				under progress.

14. TREADS DIRECT LIMITED

S. No.	Description	Cost in Rs.	Duration	Remarks
1	Carbon Handling system is to be improved	1.0 Lakhs	31.08.2010	Covering with G.S sheet to the carbon handling section. Work is under progress.
2	Rubber Curring – Fume Extraction System	8.0 Lakhs	31.08.2010	Installation of work nearing completion

15. VIGNESH ALLOYS PRIVATE LIMITED

S. No.	Description	Cost in Rs.	Duration	Remarks
1	Rotary Furnace - Wet	12.0 Lakhs	31.08.2010	Work is under
	Scrubber capacity to be			progress.
	improved			

16. FERROS ALLOYES

S. No.	Description	Cost in Rs.	Duration	Remarks
1	Induction Furnace – Bag filter and wet scrubber to be provided,	4.0 Lakhs	30.09.2010	Modification of wet scrubber and providing new bag filter is under progress.

ACTION PLAN REGARDING VOC MONITORING AND CONTROL

There is no Chemical Industry which discharge volatile organic compound emission in CEPI area. However, during conducting AAQ Survey in the CEPI area necessary arrangement will be made to conduct volatile organic compound analysis also with the help of NABL accredited Lab.

3.6.1 Existing infrastructure facilities – Ambient air quality monitoring network

National Ambient Air Quality Monitoring station is already functioning in this SIDCO Industrial Estate. The exact location of the station is "Top of the Industrial Estate Office". The NAAQM is covering only routine parameters like Total Suspended Particulate Matter (TSPM), Respirable Suspended Particulate Matter (RSPM), Sulphur Dioxide and Oxides of Nitrogen (NOx). The above parameters are being monitored 2 days /week for 52 weeks per annum. A continuous AAQ monitoring station is proposed in this location to measure all parameters at all times.

3.6.2 Pollution control measures installed by the individual sources of pollution.

All the industries have provided the suitable air pollution control measures. The foundry industries have provided air pollution control measures like wet scrubber to the furnaces and bag filter to the sand plant and shot blasting machine. Other industries are also provided the suitable air pollution control measures. The details of the pollution control measures adopted by individual industries are given below.

S. No.	Source of Pollution	APC measures
1	Induction Furnace – 3 Nos.	Common Wet scrubber with Bag filter and
		stack
2	Shot blasting machine	Bag filter with stack
3	Sand Dryer	Stack
4	DG Set – 2 Nos.	Acoustic measures with Stacks

1. AUTO SHELL CASTS PRIVATE LIMITED, COIMBATORE-641 021

2. AUTO SHELL PERFECT MOULDER LTD, COIMBATORE-641 021

S. No.	Source of Pollution	APC measures
1	Induction Furnace – 2 Nos	Common Wet scrubber with Bag filter and
		stack
2	Cupola Furnace - 2 Nos	Individual Wet scrubber with 11m height
		stack
3	Shot Blasting machine - 2	Individual bag filter with stack
	No	

3. INDO SHELL CAST PRIVATE LIMITED

S. No.	Source of Pollution	APC measures
1	Induction Furnaces – 2 No	Common bag filter & wet scrubber with
		stack
2	Induction Furnaces - 1 No	Bag filter & wet scrubber with stack
3	Shell moulding machines – 4	Common wet scrubber with stack
	No	
4	Shell moulding machines – 3	Common wet scrubber with stack
	No	
5	Shot Blasting machine – 2	Individual Bag Filters with stack
	No	
6	Generator – 3 No	Acoustic enclosure & Stack

4. EVEREST INDUSTRIES LIMITED PODANUR WORKS

S. No.	Source of Pollution	APC measures
1	Fibre Mill Stack	Bag House of Bag Filters with reverse
		Pulse Jet
2	Cement & Fly ash Feeding	Bag House of Bag Filters with reverse
	Stack	Pulse Jet
3	Carbo Saw Stack	Bag House of Bag Filters with reverse
		Pulse Jet
4	Hard Ground Waste Stack	Bag House of Bag Filters with reverse
		Pulse Jet

5. CRAFTSMAN AUTOMATION PVT. LTD., UNIT - II

S. No.	Source of Pollution	APC measures
1	Diesel Fired Melting	Common wet scrubber with stack
	Furnaces – 3 No	
2	Shot Blasting machine	Individual Bag Filters with stack
3	Generator (180 KVA)	Acoustic enclosure & Stack

6. UNIQUE SHELL MOULD (INDIA) PRIVATE LIMITED, PLANT – I

S. No.	Source of Pollution	APC measures
1	Electrical Furnace – 12 No &	Common wet scrubber with stack
	Gas operated Furnace - 1	
	No	
2	Pit Furnace - 1 No	Stack
3	Shot Blasting machine	Bag Filters with stack
4	Generator (2 No)	Acoustic enclosure & Stack

7. UNIQUE SHELL MOULD (INDIA) PRIVATE LIMITED- PLANT II

S. No.	Source of Pollution	APC measures
1	Electrical Furnace – 8 No,	Common wet scrubber with stack
	Gas fired Furnace – 2 No &	
	Diesel fired furnace – 1 No	
2	Shot Blasting machine	Bag Filters with stack
3	Generator	Stack

8. INDO SHELL MOULD LIMITED, PLANT – I

S. No.	Source of Pollution	APC measures
1	Induction Furnaces – 2 No	Common bag filter & wet scrubber with stack
2	Shell moulding machines – 5 No	Common Bag filters with stack
3	Core drier	Stack
4	Generator – 3 No	Acoustic enclosure & Stack

9. INDO SHELL MOULD LIMITED, PLANT – II

S. No.	Source of Pollution	APC measures
1	Induction Furnaces – 2 No	Common wet scrubber with stack
2	Shell moulding machines – 10 No	Individual Bag filters with stack
3	Shot Blasting machine – 7 No	Individual Bag Filters with stack
4	Aluminium Melting Furnaces	Common wet scrubber with stack
5	Heat Treatment Furnace	Stack
6	Core drier	Stack
7	Generator – 6 No	Stack

10. SRI SEETHALAKSHMI STEEL CASTINGS PRIVATE LIMITED

S. No.	Source of Pollution	APC measures
1	Induction Furnace	Wet scrubber with stack
2	Shot Blasting machine	Bag Filters with stack
3	Generator (125 KVA)	Stack

11. JAYASHREE METAL CASTERS PVT LTD

S. No.	Source of Pollution	APC measures
1	Induction Furnace	Wet scrubber with stack
2	Shot Blasting machine	Bag Filters with stack

12. TITAN PAINTS & CHEMICALS LIMITED

S. No.	Source of Pollution	APC measures
1	Micro pulveriser – 1 & 2	Individual Bag Filters with stack
2	Spray paint booth – 1 & 2	Stack
3	DG set (320 KVA)	Acoustic enclosure & Stack

13. KMR METAL MART

S. No.	Source of Pollution	APC measures
1	Rotary Furnace – 2 No	Settling Chamber, Cyclone, U-Tube
		cooling Chamber, Bag filter and Wet
		Scrubber with stack

3.6.3 Technological Intervention

3.6.3.1 Inventorisation of prominent industries with technological gaps

In the foundries having induction furnace have provided wet scrubber as APC measures. In order to remove metal oxides the wet scrubbers alone may not be sufficient. Hence, bag filter has been proposed before wet scrubber for effective removal of Suspended Particulate Matter.

3.6.3.2 Identification of low cost and advanced cleaner technology for air pollution control

Bag filters before wet scrubber has been proposed for the foundries with induction furnace to remove the metal oxides completely.

3.6.3.3 Introduction and switch over to cleaner fuel

All large and medium scale foundries are having induction furnaces operated with electricity.

3.6.4 Need of infrastructure Renovation

The basic infrastructure like road, storm water drainage, Sewage Treatment Plant, green belt development, rain water harvesting structures are to be improved from its existing level.

3.6.4.1 Development of roads

The internal roads of the industrial cluster are not fully black topped which will create more suspended particulate matter. So the existing roads should be improved by laying additional tar layers after leveling the roads. Existing roads without black tops should be provided with new tar layers or metal tops. The laying of new roads will reduce the SPM levels in the ambient air of the cluster area.

The green belt has to be improved in and around the cluster area. Adequate depth of green belt should be developed commonly around the cluster area. Industries not having open space within the industrial plot should develop the green belt in the common area within the cluster area. The trees to be planted should be selected based on the climate and soil condition of the cluster area.

3.6.5 Impact on CEPI score after installation / commissioning of full fledged air pollution control system.

As of now the action plans committed / proposed by the individual industries are under implementation stage. About 60% of the works have been completed, 20% of the work will be completed within three months or before December 2010.

VXL RING TRAVELLERS

EVEREST INDUSTRIES LIMITED FACTORY INTERNAL ROADS

FACTORY INTERNAL ROADS

VIEW OF SEWAGE TREATMENT PLANT WITH EMFM

VIEW OF SEIVE WASH ACID RECYCLING SYSTEM

INDO SHELL CAST PRIVATE LIMITED GENERATOR ACCOUSTIC ENCLOSURE

UNIQUE SHELL MOULD INDIA PRIVATE LIMITED – PLANT - 1

UNIQUE SHELL MOULD INDIA PRIVATE LIMITED – PLANT - II

AUTOSHELL PERFECT MOULDER LIMITED

Indo Shell Mould Limited Tree Plantation

Planted by:Mr.K.Jagadeesain–Chairman & Managing Director(Indo Shell Mould Limited)

3.6.6 Managerial and Financial aspects

The action plans proposed by the individual industries are detailed in the below sections.

3.6.6.1 Cost and time estimates

The cost and time estimate by individual industries was already in section 3.2.

3.6.6.2 Identified Private/Public sector potential investors & their contribution / obligation

This detail was already dealt in section – 3.2.

3.6.6.3 Government Budgetary support requirement

The foundries have proposed to provide waste sand Reclamation Plant (individually). Only two small scale foundries have planned to join with common facility proposed by COSMAFAN at Arasur.

NAAQM station functioning now is analyzing only basic parameters manually and not on continuous basis. A continuous AAQ monitoring station is proposed to have the air quality with all parameters at all times. Approximate estimate cost for one CAAQM station is Rs. 150 lakhs.

3.6.6.4 Hierarchical and structured managerial system for efficient implementation

In the action plan proposed, 60 to 70% was already completed and within two or three months and all action plans will be completed except continuous monitoring AAQ Station..

In order to review the progress, a steering committee with industries and association office bearers has been formed to monitor the implementation of action plans proposed commonly as well as individually by the industries. The members of the committee include the top level management of industries and their representatives. The committee will meet once in a fortnight and review the implementation status of the action plans. TNPC Board is also conducting review meeting once in 15 days to speed up the work.

3.6.7 Self monitoring system in industries (Stacks, APCDs)

The large and medium scale foundries located within the cluster area are regularly monitoring the pollution level like source emission, ambient air quality, noise levels through Tamilnadu Pollution Control Board Lab as well as private agencies.

3.6.8 Data linkages to SPCB/CPCB (of monitoring devices)

A continuous Ambient Air Quality Monitoring station is proposed in the SIDCO Industrial cluster. For this a sum of Rs.150 Lakhs is required including manpower, building and infrastructure facilities. After providing the CAAQM station the data may be linked to the TNPCBd Care Air Centre function at Corporate Office, Chennai.

4.0 LAND ENVIRONMENT (SOIL AND GROUNDWATER)

4.1 Soil Contamination

There is no soil contamination in the Industrial cluster.

4.2 Ground Water Contamination

4.2.1 Present Status / Quality of Ground Water:

In the industrial cluster at Kuruchi there is no 17 category of Industries or major effluent generating industries. Only few industries (Phosphating) are generating very meager quantity of trade effluent. The trade effluent is being treated and disposed. Two industries have provided R.O.Plant so as to achieve zero discharge. There is no discharge of effluent outside the premises which causes ground water pollution.

In order to assess the quality of ground water two locations were identified (The same location which was identified for the calculation of CEPI by CPCB) and periodical samples are being collected. The report of analysis of water Quality is furnished in the **Table 4.1**.

Except conductivity all other parameters are within standards. There is no presence of any toxic substances in the ground water.

4.2.2 Sources Identification:

In the ground water quality only TDS is in excess of standards. There is no major effluent generating industry in this cluster. However, two medium scale surface treatment units have provided R.O.Plant to achieve zero discharge for even the trade effluent quantity of 1 to 2 KLD. The presence of TDS may be geological feature of that area.

4.2.3 Ground Water Quality Monitoring Program

In order to assess the quality of ground water in addition to the two locations as above two more locations was identified. Water sample will be collected from four locations once in three months to assess the water quality.

4.2.4. Action Plan for Control of Pollution including Cost / time aspects

There is no water consuming industry in this cluster and also there is no major effluent generating industries also. Only few phosphating / surface treatment industries which have generating very meager quantity of trade effluent (Less than 2 to 3 KLD). Among this two medium scale industries have provided R.O System so as to achieve zero discharge at a cost of about Rs. 10 Lakhs. The remaining small scale industries are having treatment plant to treat the trade effluent. A common Sewage Treatment Plant is proposed to treat the

sewage generated from all industries. The approximate cost of the installation of common STP is Rs.60 Lakhs exclusively for the transportation of sewage.

4.2.5 Treatment and Management of contaminated Ground Water Bodies, etc.,

There is no contaminated ground water body I n this CEPI area. However, to improve the quality of ground water all the industries are taking steps to have effective rain water harvesting system.

4.2.6 Impact on CEPI Score after abatement of pollution

Based on the number and type of industries in the cluster as well as quality of ground water CEPI score for water Environment works out to 35.

The reason for this as follows:-

- i. There is no 17 category of Industries
- ii. There is no major water consuming Industry.
- iii. There is no discharge of trade effluent in the CEPI area.
- iv. The ROA of Water Quality shows only TDS is in excess.
- v. There is no presence of any toxic substance in the water quality.
- vi. There is no CEPI in this CETP area and Impact Zone also.

4.3 Solid Waste Generation and Management

4.3.1 Waste Classification and Quantification

4.3.1.1 Hazardous Waste

There is no major hazardous waste generating industries in the CEPI area. However, 8 industries are generating hazardous wastes of quantity 123.90Tons per Annum such as waste / use oil, ETP sludge etc. Out of 123.90 T/Annum of total Hazardous waste generated, 3.15 Tons are recyclable, 120.75 T are Land fillable. The details of Industries which generates hazardous waste are furnished in Table 4.2. All the industries are storing the hazardous waste in a closed room with necessary records to be maintained.

SI.	Name of the Industry	Hazardous Waste		Mode of disposal		
No		Туре	Qty.in	Recycla	Incinera	Land
			ТРА	ble (TPA)	Ble	Fillable
					(TPA)	(TPA)
1	M/s. Unique Shell Mould (India)	5.1	1.08	1.08	-	-
	Pvt.Limited,					
	"Engineering Division"					
	Plot No:7-9, South Block					
	Private Industrial Estate,					
	SIDCO,Coimbatore – 21.					
2	M/s. Unique Shell Mould (India)	5.1	0.495	0.495	-	-
	Pvt.Ltd., Plant-I					
	Plot No:2-4, South Block					
	Private Industrial Estate,					
	SIDCO,Coimbatore – 21.					
3	M/s. Unique Shell Mould (India)	5.2	0.405	0.405	-	-
	Pvt.Limited, PLANT-II					
	Plot No:2-4, South Block					
	Private Industrial Estate,					
	SIDCO,Coimbatore – 21.					
4	Vijayeswari Ring Travellers	14.2	0.3	-	-	0.3
	Pvt.Limited,					
	SF.No:166,166/3,166/4,					
	Kuruchi Village					
	Private Industrial Estate,					
	Coimbatore-21					

TABLE – 4.2DETAILS OF HAZARDOUS WASTE GENERATING INDUSTRIES

5	Best Heat Treatment Services,	14.2	0.1	-	-	0.1
	53, SIDCO Industrial Estate,					
	Coimbatore-21					
6	V.X.L.Ring Travellers (P)	34.3	0.353	-	-	0.353
	Limited,					
	22, SIDCO Industrial Estate,					
	Coimbatore – 21					
7	KMR Metal mart,	9.1	120	-	-	120 T/Y
	1/226-B,Pollachi Main Road,					
	Near SIDCO Railway Gate,					
	Eachanari (PO),	9.2				
	Coimbatore – 28					
8	Everest Industries Limited,	5.1	1.17	1.17	-	-
	Podanur	15.1	103.30	103.30		
	Coimbatore - 21					

4.3.1.2 Bio - Medical Waste

In the Industrial cluster there is no clinic / hospital which generate Bio-medical waste. However, 9 number of hospitals are located within impact zone. The details of hospitals which generate Bio Medical Waste are furnished in Table 4.3. These Hospitals are the members of the Common Bio-Medical Treatment facility and the segregated Bio-Medical Waste is being sent to the common facility located at a distance of about 11 Km from CEPI area for treatment and disposal.

<u>TABLE 4.3</u>

DETAILS OF BIO-MEDICAL WASTE GENERATING HOSPITALS

SI.	Name of the Hospital	Bio Medical Waste generated in
No.		Kg/Month
1	N.R.P. Hospital,	76.70
	Sundarapuram,	
	Coimbatore South Taluk.	
2	Sri Balaji Hospital,	102.00
	Sundarapuram,	
	Coimbatore South Taluk	
3	Abirami Hospital,	122.00
	Sundarapuram,	
	Coimbatore South Taluk	
4	Abinand Hospital,	112.50
	Sundarapuram,	
	Coimbatore South Taluk	
5	G.S.Hospital	8.50
	Sundarapuram,	
	Coimbatore South Taluk	

6	Ganapathy Poly Clinic,	75.00
	Sundarapuram,	
	Coimbatore South Taluk	
7	St.Mary's Hospital	110.00
	Podanur,Coimbatore South Taluk	
8	Koushikha Hospital,	150.00
	Podanur,Coimbatore South Taluk	
9	S.M.Clinic,	67.20
	Podanur,Coimbatore South Taluk	
	Total Quantity	823.90

4.3.1.2 Electronic Waste:

There is no Electronic / IT industry in the CEPI area. However, all the industries were advised to handle the Electronic Waste properly and it should be given to the authorized recyclers only.

4.3.1.3 Municipal solid Waste / Domestic Waste / Sludge from ETPs / CETPs / STPS and other Industrial sources:

Municipal Solid Waste and Domestic Waste in CEPI area is being collected by the local body Kurichi Municipality for further treatment and disposal. In the impact zone Kuruchi Phase I and Phase II Residential Quarters developed Tamilnadu Housing Unit is located and also other residential area are located within the impact zone area.

Sludge from ETPS has been classified as Hazardous Waste and it is being handled as per HW (M&H) Rules. There is no CETP in this CEPI area. The sludge from STP is only a Biosludge which is of meager quantity utilized as manure for gardening purpose.

Major Industrial solid waste from CEPI area is foundry waste sand after molding it is disposed as solid waste. This waste sand (Sodium silicate Sand and Resin Sand) can be reused after reclamation. All large and Medium Scale Foundries are having / proposed to provide waste sand reclamation plant to reuse the sand. The details are dealt in Action Points.

4.3.1.5 Plastic Waste

The industries are sending the packing and other plastic waste to recyclers. The plastic waste which cannot be recycled from MSW will be co-incinerated in the cement kiln of M/s. ACC Limited, Madhukkarai Cement works, Madukkarai, Coimbatore district. The local body Kuruchi Municipality has a proposal to hand over this plastic waste to Coimbatore Corporation for disposal as mentioned above.

4.3.1.6 Quantification of Waste:

Quantification of Hazardous Waste from Industries is furnished in Table 4.2.

4.3.2. Identification of Waste minimization and Waste exchange options:

Foundries proposed to have waste sand reclamation plant to reuse the sand and ultimately reduces the disposal of waste sand. There is no specific waste in this cluster for exchange.

4.3.3 <u>Reduction / Reuse / Recovery / Recycle options in the co-processing of wastes</u>

In foundry sand is used as one of the raw material for preparation of mould. The mould sand can be prepared in three methods as follows depending upon applications.

a. Green Sand : The sand is mixed with water , bentonite (clay), coal powder and filled in moulds and pressed in the machine to get moulds. In this method the sand is reused several times. Only 2-3% of fresh sand is used for make up. Grey iron casting are derived from this type of moulding.

b. Sodium Silicate Sand : The sand is mixed with sodium silicate and CO_2 is passed to increase the hardness of the moulds. In this method total sand is not used as such. Stainless Steel Casting are derived from this type of moulding.

c. Resin Sand : The sand is mixed with resin like furfuryl alcohol and allowed to set in the air for prescribed time. Stainless Steel Casting are derived from this type of moulding.

After pouring of metal in the mould cooling the mould sand is disposed as solid waste. In green sand the burnt sand is being reused again as such and the disposal of waste sand is very minimum. Whereas, in other two methods of mould the disposal of waste sand will be more.

Types of Waste sand Reclamation:

a. Attrition sand reclamation

Attrition sand reclamation technology spins two streams of sand in opposite directions in the presence of heat. The combination of sand abrasion and binder combustion free the sand particles from some binders. Attrition cannot remove all residual binders, but works well with no-bake binders. The yield from this process is a high strength recycled sand. Because all binders cannot be removed through attrition, the sand characteristics may be changed. For some casting operations the characteristics may be changed significantly enough that the sand may be be ineffective for furture castings. Attrition methods of sand reclamation may also produce large quantities of dust. The dust can be captured in air emission control equipment, hence contributing to the total volume of solid waste.

b. Dry sand reclamation

Dry sand reclamation relies on mechanical and pneumatic scrubbers to remove lumps and binders from sand. Mechanical scrubbing moves each sand grain through a sand-to- metal or sand-to-sand interface to remove impurities. Pneumatic scrubbers use air to propel sand between baffles. These scrubbers are particularly good for removing clay from molding sands and binders in systems that are not baked. Dry reclamation can produce large quantities of dust. These air emissions have to be monitored and captured by control equipment. Dry sand reclamation may also not be capable of removing binders to the extent necessary for reuse in some foundry operations.

c. Wet reclamation

Wet reclamation uses water to remove sand binders. The process uses on the different water solubilities of sand and binders to separate the two. Clay bonded systems work well with water reclamation processes because the clays are very soluble in water. Sodium silicate sand binders can also be removed using wet reclamation. The sodium silicate dissolves part of the sand crystal when binding, but can be removed by exposing it to water. After the sand is soaked in a water bath it is dried and reused. Although wet reclamation was used in the 1950s and 1960s, it has been nearly eliminated as a method of sand recovery. Chemical binders are also no longer sufficiently hydrophilic to dissolve in water. Further, organic resins that do dissolve and other water soluble impurities can cause significant water contamination. The high volume of waste water and strict environmental regulations can make wet sand reclamation too expensive.

d. Thermal reclamation

Thermal reclamation uses heat in a rotary kiln, multiple-hearth furnaces, or a fluidized bed to combust binders and contaminants. In removing binders, the process can cause sand to change in composition. Combustion products from the fuel used to heat the sand and thermal cracking of the sand crystals may occur. The resulting sand may be significantly different than the original sand. Depending on the type of casting, thermally treated sand may or may not be usable. Infrared energy can also be used to thermally treat sand. This method may maintain more of the sands original composition, while still destroying binders. Infrared units, called electric sand reclamation units, are in place in the United Kingdom and Canada ("Navistar Goes Infrared," 1993). External blowers push the sand through fluidized beds, allowing the sand to directly contact the infrared radiation which breaks down the binders. The electric sand reclamation units do not produce the combustion products associated with traditional thermal reclamation processes.

4.3.3. Infrastructure facilities

There is no TSDF in the CEPI area as well as impact zone area. There is no contaminated solid waste disposal. Hence, the impact due to solid waste management is less.

5.0 PPP MODEL

5.1 Identification of Project proposals for implementation in the PPP mode under the Action plan.

In this industrial cluster all industries are having only septic tank and dispersion trench of soak pit for the treatment and disposal of sewage. This is not adequate. For all the industries in this cluster a Common Sewage treatment plant is proposed for the treatment of sewage. After treatment the treated sewage can be utilized for green belt development. It is proposed to provide a STP of capacity 500 KLD. The approximate cost for providing STP alone is Rs.60 Lakhs. The Association member units will contribute 10% of the project cost and the Government (SIDCO) will contribute the balance amount of the project.

5.2. Identification of Stake Holders / Agencies to be involved and to evolve financial and Managerial Mechanisms for implementation of PPP Project.

For implementation of Common Sewage Treatment Plant the following stake holders have been identified.

a. Preparation of proposal for					
implementations of STP	:	Industrial Association and SIDCO			
b. Land for constructing STP	:	SIDCO			
c. Implementation of STP	:	SIDCO			
d. Maintenance of STP	:	SIDCO & Industrial Association			
e. Financial Mechanism	:	Member of Industrial Association, Loan from financial institution and SIDCO.			

6.0 OTHER INFRASTRUCTURAL MEASURES:

6.1. <u>GREEN BELT DEVELOPMENT:</u>

In the Industrial Estate most of the road sides are developed with well grown trees. After declaration of CEPI area the Association has find out the roads which are not developed with green belt and so far planted 200 tree saplings with the help of Industries and proposed to plant 300 tree saplings within one month in the remaining area. All large and medium scale industries have developed green belt within the industries depending upon availability of land.

6.2. Development of Industrial Estate:

Proper Storm water drains to be provided for the entire Industrial estate.

7.0 SPECIFIC SCHEMES

7.1. GIS-GPS System for Pollution Sources Monitoring

All Large Scale Industries shall provide on line monitoring system for the specific parameters depending upon type of Industry. TNPC Board is having Care Air Centre at Corporate Office. These industries can be concentrated to the CARE AIR Centre for better monitoring.

7.2. Co-Processing of Waste in Cement Industries

The Local body Kuruchi Municipality has initiated steps to handover the non-recyclable plastic waste to Coimbatore Corporation and inturn it will be sent to the nearby cement Industries for co-incineration in cement kiln.

8.0 PUBLIC AWARENESS AND TRAINING PROGRAMMES

In order to create awareness among Public news regarding notification of critically polluted area and its consequences was published in newspaper. Frequent meetings were conducted with Industrial Association, SIDCO Officials, Industries and Local Body officials to impart the importance and steps to be taken to improve the environmental quality. TNPC Board is organizing training programme periodically for Industries, Local Bodies etc. on various subjects. TNPC Board has conducted one day workshop on sustainable development in Foundry during February 2010.

9.0 OVERALL IMPACT OF INSTALLATION / COMMISSIONING OF POLLUTION CONTROL EQUIPMENTS / MEASURES ON THE CEPI SCORE

9.1 Water Environment

In the Industrial Cluster at Kuruchi, Coimbatore District as well as in its impact zone of 2 km radius area.

- a. No 17 Category of Industry
- b. No major water consuming Industries
- c. No discharge of trade effluent in the Industrial estate.
- d. Two Medium Scale Surface coating industry provided RO plant and achieved zero discharge.
- e. Water Quality mentioned at two points within Industrial Cluster.
- f. Report of analysis of Water Quality shows only TDS is in excess and there is no presence of any toxic chemical / substances.
- g. No evidence / proof for water pollution to human and ecology within impact zone area.

Based on the above, CEPI score for water Environment works out to 35.

9.2. Air Environment

In the Industrial cluster at Kurichi as well as in its impact zone area.

- a. No Chemical Industry and VOC Emission
- b. All Foundries are having proper air pollution control measures.
- c. In order to achieve revised National AAQ standards Foundries have provided dust collector before wet scrubber to the Induction Furnace.
- d. The Industrial Estate is located on both sides of National Highways. Movement of Vehicles on NH may contribute CO, pb, Benzene to the air quality.
- e. AAQ Survey was conducted for the revised National AAQ parameters. The report shows there is no exceedance except CO.
- f. No evidence / proof for the air pollution to human as well as ecology within impact zone area.

Based on the above, CEPI score for Air Environment works out to 52.375

9.3 Land Environment

In the Industrial cluster at Kuruchi, Coimbatore District as well as in its impact zone of 2 Km radius area.

- a. No major hazardous waste generating Industry.
- b. No TSDF for hazardous waste
- c. No solid waste contaminated site.
- d. Foundries provided / proposed to provide waste sand reclamation plant to avoid haphazard disposal of waste sand.

Based on the above, CEPI score for Land Environment works out to 35.

After notification of MoEF, Government of India that Industrial Cluster at Kuruchi, Coimbatore District as critically Polluted Area, the TNPC Board has identified the possible Polluting industry, obtained action plan from individual industry. Frequent meetings conducted with the Industries and Industrial Association to speed up the implementation of improvement works, most of the industries have completed the action plan and few industries are in the process of completion stage of action plan.

After this the CEPI Score was worked out based on ground reality, actual number of industries, actual population, later Water and Air quality. Calculation of CEPI is furnished in the Annexure.

Revised Assessment of CEPI score works out to 58.2.

10.0 ASSESSMENT OF TECHNO – ECONOMICAL FEASIBILITY OF POLLUTION CONTROL SYSTEMS IN CLUSTERS OF SMALL AND MEDIUM SCALE INDUSTRIES.

In the industrial cluster at Kuruchi cluster of small scale industries which requires pollution control system is foundry sector only. There is no other cluster of industries in Kuruchi. Ass foundries have provided air pollution Control measures individually.

11.0 Efforts shall be made to encourage use of Bio-Compost and Bio-Fertilizer along with the Chemical fertilizer in the state to minimize the unutilized chemical fertilizer runoff into the natural water resources from agriculture fields (through Govt. Policy)

12.0 SUMMARY OF PROPOSED ACTION POINTS

12.1 Short Term Action Points (within 1 Year)

SI.	Action Points		Responsible Stake	Time Limit	Cost Rs.in	Remarks
No		(Source –mitigation measures)	Holders		Lakhs	
1	а	Induction Furnace – Bag Filter	M/s. Auto Shell Casts Private Limited	15.08.2010	6.50	Bag Filter provided and it is in operation
	b	Shot Blasting – Wet Settling Chamber	-	30.07.2010	3.75	Wet Settling Chamber provided and it is in operation.
	С	Waste Sand – Sand Reclamation Plant		31.08.2010	7.35	Sand reclamation plant for co ₂ is provided
2	а	Induction Furnace – Bag Filter	M/s. Autoshell Perfect Moulders Limited	15.08.2010	5.65	Bag Filter provided and it is in operation.
	b	Cupola Furnace-Wet Scrubber	-	30.07.2010	6.50	Wet scrubber (NPC design) 2 nos provided.
	С	Shot Blasting-Wet Settling Chamber		30.07.2010	3.65	Wet settling chamber is provided.it is in operation
	d	Waste Sand-Sand Reclamation Plant		31.08.2010	4.5 Crore	Under Technical discussion.
3	a. [DG Set – Accoustic Measures	M/s. Indoshell Cast Private Limited	30.07.2010	2.0	Accoustic measures completed.

4	а	Fugitive Emission-Tar Road (all	M/s. Everest Industries	30.09.2010	130	Laying of concrete Road is under progress.
		internal)	Limited, Podanur			
	b	Sieve Washing – Recycle		30.06.2010	1	Sieve Washing Water is recycled in the
						process.
	С	STP- Providing EMP		30.07.2010	1	EMFM provided.
	d	Monitoring – Lab to facilitate counting		30.09.2010	3	Quotation Obtained.
		of Asbestos fibre				
5	Was	te Sand – Sand Reclamation Plant	M/s. Craftsman	30.10.2010	14.0	Work is under progress.
			Automation Pvt.Limited			
6	DG	Set-Accoustic Measures	M/s. Unique Sheel Mould	30.07.2010	2	Completed during June 2010
			(India) Pvt.Limited,			
			Plant –I			
7	DG	Set – 2 Nos – Acoustic Measures	M/s. Unique Sheel Mould	31.08.2010	20	One DG Set was replaced with a new one
			(India) Pvt.Limited,			and acoustic measure to other DG Set will be
			Plant –II			completed before 31.08.2010.
8	v	Vaste Sand –Sand Reclamation Plant	M/s. Indoshell Mould	31.12.2010	90	Quotation obtained, Technical discussion is
			Limited, Plant-I			going on.

9	Induction Furnace-Bag filter	M/s. Indoshell Mould	31.12.2010	14	Installation of Bag filter is under progress.
		Limited,Plant-II			
	Waste Sand – Sand Reclamation		31.12.2010	90	Quotation obtained, Technical discussion is
	Plant				going on.
10	Trade Effluent-RO System	M/s. VXL Ring Travellers	30.07.2010	10	R.O. Completed and it is in operation.
		(P) Limited			
11	Induction Furnace – bag Filter	M/s. Sri Seethalakshmi	31.08.2010	2.0	Order Placed
		Steel Castings (P) Limited			
	Sand Plant – Bag Filter		30.07.2010	3.5	Provided bag filter to sand plant.
12	Knockout-Wet Scrubber	M/s. Jayashree Metal	31.08.2010	2.50	Work is under progress, It will be completed
		Casters (P) Limited			before 31.08.2010
10	Trada Effluent DO Diant		20.07.0040		DO Diant provide d and it is in an antion
13	Trade Effluent-RO Plant	M/s. Janatics India Pvt.Limited	30.07.2010	5	RO Plant provided and it is in operation.
14	Sewage – STP	M/s. Titan Paints &	30.09.2010	8	Order Placed. STP will be completed before
		Chemicals			30.05.2010

15	a Braking Section-To be mechanized	M/s. KMR Metal Mart	31.08.2010	0.50	Battery cutting machine under installation
	b House Keeping – To be improved	-	31.08.2010	2.0	Providing impervious layer around the unit is under progress
16	Carbon Handling – To be improved	Treads Direct Limited Pvt. Industrial Estate, Coimbatore - 21	31.08.2010	1.0	Covering with G.S sheet to the carbon handling section work is under progress.
	Rubber Curring – Fume Extraction System		31.08.2010	8.0	Installation of work nearing completion.
17	Rotary Furnace – Wet Scrubber capacity to be improved	Vignesh Alloys Pvt.Limited	31.08.2010	12.0	Work is under progress.
18	Induction Furnace – Bag Filter & Wet Scrubber to be provided	Ferros Alloyes, N-3, SIDCO, Coimbatore – 21.	30.09.2010	4.0	Modification of wet scrubber and providing new bag filter is under progress.
19	Pit Furnaces – APC to be improved	SKR Metal Refiners and Suppliers	31.08.2010	2.0	Work is under progress.

13.2 Long Term Action Points (more than 1 Year)

SI.	Action Points	Responsible Stake	Time Limit	Cost Rs.in	Remarks
No	(Source –mitigation measures)	Holders		Lakhs	
1	Providing Continuous AAQ Monitoring Stations	TNPC Board	More than One year	150	Expecting Grant from Govt. of India
2	Common STP	Industrial Association and TNSIDCO	More than one year	146	STP proposal prepared and it is in the process of applying to the Government for subsidy.

13.1 CEPI AS PER CURRENT STATUS

Ambient Air Quality Survey was conducted on 23.07.2010 and 24.07.2010 in Industrial Cluster at Kuruchi, Coimbatore District by the VIMTA Labs for TNPC Board. To ascertain the Water Quality in the cluster area water samples collected on 22.07.2010 and at two locations. The parameters are analysed as per guidelines issued.

Industrial cluster at Kuruchi and it's impact zone will have a maximum population of 76794 (Entire Kuruchi Village Population as per 2001 Census). There is no 17 category of industry, CETP, Common Treatment and disposal of Hazardous Waste facility in the cluster as well as it's impact zone. Total number of R54 Industries in this cluster is 45 only.

The industries has taken steps to complete the action plan as already explained.

Based on the above facts and figures CEPI was calculated and the score is 53.9. The calculation is given below:

<u>13.2 CEPI CALCULATION FOR KURICHI INDUSTRIAL CLUSTER, COIMBATORE</u> (TAMILNADU)

1. AIR ENVIRONMENT

A. POLLUTANT

Pollu	tants	Cate	egory		
Benzo	o (a) Pyi	rene		-	С
Lead				-	В
Nicke	I			-	С
PM10	I			-	В
PM25	1			-	В
A1	=	5.75			
	R17	-	Nil		
	R54	-	45		

A2 = 2.5 (moderate)

A = A1 x A2 = 5.75 x 2.5 = 14.375

B. PATHWAY

Pollutants	Average Concentration	Exceedence Factor
Benzo (a) Pyrene	34.45	34.35
PM10	153.60	1.536
PM25	63.25	1.05

(Source : AAQ Survey Report by VIMTA Labs for TNPC Board)

B1	=	6+2 = 8
B2	=	0 (No evidence of exposure on people)
B3	=	0 (Symptoms of Exposure of ECO – Geological feature)

B = 8 + 0 + 0 = 8

C. RECEPTOR

Population Exposed = 76,794 (Kurichi Village Population) C1 = 3.0

Samples Exceeded / total no.of samples X EF	SNLF
2/2 x 34.45	34.45
2/2x1.536	1.536
1/2x63.25	31.625
	2/2 x 34.45 2/2x1.536

C2 = 3+2 = 5C3 = 5 C = (C1 x C2) + C3 = (3.0×5) + 5 = 20

D. ADDITIONAL RISK ELEMENT

D = 10 (No CETP / FETP / CHWDF)

AIR EPI = A + B + C + D = 14.375 + 8 + 20 + 10 = 52.375

AIR EPI = 52.375

2. WATER ENVIRONMENT

A. POLLUTANT

Polluta	ants	Categ	Category	
COD			В	
Nitrate	Nitroge		В	
Iron To	otal			А
A1	=	2 + 1	= 3	
A2	=	2.5 (n	noderate	e)
А	= A1 x	A2	= 3 x 2	2.5 = 7.5

B. <u>PATHWAY</u>

Pollutants	Average Concentration	Exceedence Factor
Conductivity	2860	1.27
	(Desirable < 2250)	
Nitrate Nitrogen	6.15	
	(< 15)	

B1 = 3+1 = 4 B2 = 0 (No reliable evidence is available) B3 = 0 B = B1 + B2 + B3 = 4

C. RECEPTOR

C1 = 3

C2 = 3

 $C = (C1 \times C2) + C3 = (3 \times 3) + 5 = 14$

D. ADDITIONAL RISK ELEMENT

$$D = 10$$
 (No CETP)

WATER EPI = A + B + C + D = 7.5 + 4 + 9.5 + 14 = 35

3. LAND ENVIRONMENT

A. <u>POLLUTANT</u>

A1 = 3
A2 = 2.5
A = A1 x A2 =
$$3 x 2.5 = 7.5$$

B. <u>PATHWAY</u>

B1 = 4 B2 = 0 (No evidence) B3 = 0 B = B1 + B2 + B3 = 4 + 0 + 0 = 4

C. RECEPTOR

- C1 = 3
- C2 = 3
- C3 = 5
- $C = (C1 \times C2) + C3 = (3 \times 3) + 5 = 14$

D. ADDITIONAL RISK ELEMENT

D = 10

LAND EPI = A + B + C + D = 7.5 + 4 + 14 + 10 = 35

CEPI = 52.375 + [(100 – 52.375) x 0.35 x 0.35]

= 52.375 + 5.83

= 58.205

CEPI FOR KURICHI INDUSTRIAL CLUSTER = 58.2

13.3 CONCLUSION:

Due to the above facts and figures and also due to the action taken by the Industries the CEPI works out to 58.2 for the Industrial Cluster, Kurichi, Coimbatore District.

In view of the above Industrial cluster, Kurichi, Coimbatore District may be denotified from the list of Critically Polluted Area.